Objective
Small molecules can be used to probe for biological function of individual proteins. Achieving high selectivity with small molecules against structurally similar paralogues is a challenging task that makes it difficult to characterize function of individual member in the same protein family or individual domain in protein containing multiple target domains. The Bromo and Extra-Terminal (BET) proteins play important roles in transcriptional regulation by controlling networks of genes involved in cellular proliferation and cell cycle regulation. Key to the functions of BET proteins is a pair of highly homologous bromodomains (BD) in tandem, which bind and recognize histone acetylation on its tail. Elucidation of the process controlled by BET proteins would benefit greatly from chemical probes that perturb individual BD with high selectivity. Development of small molecules, including clinical candidate drug I-BET, builds a foundation for us to utilize this chemical probe approach, however lack of selectivity of I-BET against individual BD renders it inapplicable to serve as a chemical probe for individual protein or domain. Recently, we had demonstrated the feasibility of a “bump-and-hole” approach to engineer BD of BET proteins and I-BET molecule to achieve high selectivity. Here we propose to enhance the selectivity of BD and I-BET derivative pair to apply this technology and to probe for the function of individual BD in a cell-based model. Interaction between modified I-BET and selected BD variant, which retain its histone binding functionality, will be further optimized to achieve >100 fold selectivity against all wildtype BD. After that, a cell-based model will be built to substitute endogenous BET protein with exogenous BET containing BD variant. The ultimate goal is to develop a general chemical biology tool to elucidate the role of any individual BD-containing proteins by targeting specifically the engineered BD without affecting any other BD.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- medical and health sciences basic medicine pharmacology and pharmacy drug discovery
- engineering and technology materials engineering crystals
- medical and health sciences basic medicine medicinal chemistry
- natural sciences biological sciences biochemistry biomolecules proteins
- medical and health sciences clinical medicine oncology
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF-EF-ST - Standard EF
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2014
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
DD1 4HN Dundee
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.