Skip to main content

Hybrid DNA-protein nanopores with large and uniform pore sizes

Objective

This proposal aims at developing novel hybrid DNA-protein nanopores with well-defined, uniform channel sizes, to advance fundamental studies on transport across membranes and to enable the development of new biosensors and progress towards creating artificial cells and tissues. Currently used protein nanopores either have a limited cargo capacity, which is set by their internal diameter, or they are heterogeneous in size and sometimes incompletely assembled. I propose to use DNA origami nanostructures as scaffolds for barrel- and ring-forming peptides of alpha-haemolysin and ClyA/Wza to create hybrid pores with larger and uniform pore sizes. These hybrid pores have the advantage that they are fully biocompatible and retain the potential for genetic and chemical engineering at the level of the DNA and proteins through the use of nucleotide recognition sequences and functionalised amino acid residues. By systematic characterisation of the hybrid nanopores in the controlled environment of droplet interface bilayers using single-channel current recordings and fluorescent detection of transport across membranes, the proposed hybrid nanopores will provide valuable insights into membrane transport and potential applications in biotechnology and medicine.

Field of science

  • /natural sciences/chemical sciences/organic chemistry/amines
  • /natural sciences/biological sciences/genetics and heredity/nucleotide
  • /engineering and technology/chemical engineering
  • /natural sciences/biological sciences/biochemistry/biomolecules/proteins
  • /social sciences/social and economic geography/transport
  • /engineering and technology/environmental biotechnology/biosensing

Call for proposal

H2020-MSCA-IF-2014
See other projects for this call

Funding Scheme

MSCA-IF-EF-ST - Standard EF

Coordinator

THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Address
Wellington Square University Offices
OX1 2JD Oxford
United Kingdom
Activity type
Higher or Secondary Education Establishments
EU contribution
€ 195 454,80