Skip to main content
European Commission logo
English English
CORDIS - EU research results
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

Synthetic Gauge Fields in Quantum Optics

Objective

Synthetic gauge fields have many important physical consequences in quantum optical systems. This fast-growing topic of research is opening up new possibilities for the lossless optical transmission of information, for improved optical components, such as optical isolators, and even for fault-free topological quantum computing. We explore how to push cutting-edge experiments towards these goals by theoretically studying the interplay of synthetic gauge fields with optical nonlinearity, pumping and loss in photonic devices. The systems we shall investigate range from artificial graphene and other condensed matter models simulated with microcavities; to lattices of classical pendula and waveguides; to strongly correlated fractional quantum Hall-like states of light and their exotic excitations. Our work will have an immediate impact through international experimental collaborations and an interdisciplinary approach building on our combined range of expertise. We will exploit concepts and techniques from diverse research areas including quantum fluids, topological phases of matter, solid-state systems and non-equilibrium physics. Our project couples the investigation of novel phenomena arising from gauge fields in many-body systems with the hunt for new and improved technological applications in photonics.

Coordinator

CONSIGLIO NAZIONALE DELLE RICERCHE
Net EU contribution
€ 168 277,20
Address
PIAZZALE ALDO MORO 7
00185 Roma
Italy

See on map

Region
Centro (IT) Lazio Roma
Activity type
Research Organisations
Links
Total cost
€ 168 277,20