Objective Pollination contributes to more than $200 billion of revenue, about 10% of the global agricultural production. In addition to higher yields and better quality of fruits and vegetables, pollination has evolutionary implications. Understanding the cues that attract and sustain pollinators will positively impact agriculture and our knowledge on how to preserve biodiversity. This project aims to unravel the role of plant metabolism in pollination by exploiting the genotypic variation existing among natural accessions of Arabidopsis and in combination with metabolomics and transcriptomics to identify genes that regulate the traits that plants use to attract and reward pollinators. These are fragrance, colour and nectar. Volatiles emitted from flowers of a collection of 360 Arabidopsis ecotypes will be analysed via GC-MS, and sugars, amino acids and secondary metabolites measured via HPLC and LC-MS. Genome-wide association studies will be used to correlate metabolic phenotypes and single nucleotide polymorphisms to loci that regulate pollination traits, which will be further studied to establish gene functions. Metabolites and RNA extracted at time points during flower development will be used to identify the regulatory elements of pollination-related metabolite formation. To assess the contribution of pollination traits to flower attractiveness, behavioural experiments with hoverflies will be performed. Finally, the knowledge acquired from the model plant Arabidopsis will be transferred to the oilseed crop Camelina, in which pollination efficiency will be measured as seed production. The project combines multidisciplinary approaches to expand the skills of the fellow. In turn, the fellow will bring expertise about Camelina and CRISPR to the host. At its completion, the project will provide the host institution with a large dataset of metabolic signatures for the generation and validation of new hypotheses with regard to scent, colour and nectar formation. Fields of science natural scienceschemical sciencesorganic chemistryorganic acidsnatural sciencesbiological sciencesgeneticsnucleotidesnatural sciencesbiological sciencesgeneticsRNAnatural scienceschemical sciencesorganic chemistryaminesnatural sciencesbiological sciencesbotany Programme(s) H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions Main Programme H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility Topic(s) MSCA-IF-2014-EF - Marie Skłodowska-Curie Individual Fellowships (IF-EF) Call for proposal H2020-MSCA-IF-2014 See other projects for this call Funding Scheme MSCA-IF-EF-ST - Standard EF Coordinator WAGENINGEN UNIVERSITY Net EU contribution € 165 598,80 Address Droevendaalsesteeg 4 6708 PB Wageningen Netherlands See on map Region Oost-Nederland Gelderland Veluwe Activity type Higher or Secondary Education Establishments Links Contact the organisation Opens in new window Website Opens in new window Participation in EU R&I programmes Opens in new window HORIZON collaboration network Opens in new window Other funding € 0,00