Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Composite-particle approach to Symmetry Protected Topological Phases

Objective

The sum being greater than its parts is a common theme in condensed matter physics. Materials made of large numbers of simple constituents often exhibit intriguing and markedly distinct phases of matter with properties very different from any of the individual constituents. Understanding the possible phases of matter and identifying them in real materials is the central focus of this branch of physics. Roughly speaking, two categories of phases of matter exist--- conventional phases which show a geometrical pattern of order, and topological phases, where the order is more elusive and related to topological concepts. In the past three decades, topological phases have attracted a large amount of interest due to their tendency to exhibit highly robust quantum phenomena which has various applications in quantum engineering and metrology. The current frontier in the field aims at understanding the variety of novel topological phases which arise when some extra symmetries, such as time reversal, are not allowed to be broken. In this project we explore this new type of phase using the concept of composite particles --- an idea which has been extremely useful in previous studies of topological matter, but has not been applied in the symmetry-protected context previously. The fundamental idea behind our approach is to view symmetry protected topological (SPT) phases of spin/electron systems as conventional ferromagnets/superconductors/metals of composite objects. Besides its conceptual importance, such an approach will allow us to utilize our knowledge of conventional phases in the context of SPT phases and also derive microscopic models which realize these states of matter. It will thus increase the chance of discovering new SPT phases in nature.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-IF-EF-ST - Standard EF

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-IF-2014

See all projects funded under this call

Coordinator

THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 195 454,80
Address
WELLINGTON SQUARE UNIVERSITY OFFICES
OX1 2JD Oxford
United Kingdom

See on map

Region
South East (England) Berkshire, Buckinghamshire and Oxfordshire Oxfordshire
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 195 454,80
My booklet 0 0