Objective
The objective of the present project is to control the energy carried out by mechanical and electromagnetic waves by means of a new type of advanced artificial structures. To achieve this control resonant cavities for the simultaneous localization of elastic and electromagnetic waves will bedeveloped. The mentioned structures will be based on artificial anisotropic and inhomogeneous materials, designed by properly engineered periodic arrangements of scattering units.
The project aims to exploit the unusual properties of these complex structures for the localization of the energy carried out by mechanical and electromagnetic waves, offering in this way a new insight to the field of artificial materials (metamaterials), where less attention has been given to the problem of localization of waves, since it has focused efforts in the extraordinary propagation characteristics of waves along them (negative refraction, cloaking, transformation acoustics and electromagnetics, etc.).
The objectives of the project will be accomplished by the deep understanding of a new type of structures: Radial Wave Crystals (RWC), a special type of sonic and photonic crystals which present cylindrical or spherical symmetries.
It is well known that cylindrical shells of RWC present extraordinary resonant properties. However, their study has been slow given the difficulties found in their physical realization. In this proposal this feasibility will be explored, and also less restrictive versions of RWC will be seek, but trying to keep their extraordinary properties.
Finally, based on RWC a new type of optomechanical cavities will be investigated, by studying the electromagnetic and mechanical properties of these structures embedded in finite substrates. An iterative discussion with experimentalists at the IEMN (the host institution) will lead to a realistic proposal for the fabrication of an efficient optomechanical cavity based on inhomogeneous and anisotropic structures.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences physical sciences electromagnetism and electronics electromagnetism
- natural sciences physical sciences electromagnetism and electronics optoelectronics
- engineering and technology electrical engineering, electronic engineering, information engineering electrical engineering power engineering
- engineering and technology electrical engineering, electronic engineering, information engineering electrical engineering piezoelectrics
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2014
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
59000 Lille
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.