Objective
The arbuscular mycorrhizal (AM) symbiosis is one of the most ancient, abundant, and ecologically important mutualisms on Earth. Yet, despite its crucial role in land ecosystems, molecular mechanisms leading to its formation are just beginning to be unraveled. However, approximately 18% of all land plants, including important crop species, do not form a symbiosis with AM fungi (AMF) and can even be antagonized by them. These non-mycorrhizal plants include several major crops as well as many important weeds. Until now, molecular interactions between AMF and non-host plants have been poorly understood, possibly due to the absence of a suitable model system. Recently, it has been demonstrated that the non-host model plant Arabidopsis thaliana becomes heavily infected by AMF when exposed to mycorrhizal networks that are established by neighboring host plants, resulting in a strong reduction of growth of the non-host plant. However, arbuscules, the most characteristic structure in the AM symbiosis, have not been found in this interaction. These results point to a different interaction between A. thaliana and AMF compared to a functional symbiosis AMF host plant. Here we propose to utilize the well-established Arabidopsis model system to investigate the molecular mechanisms that explain the biological basis of AM fungal incompatibility through a multidisciplinary approach. We will test whether growth suppression previously observed in AMF-infected Arabidopsis is caused by nutrient limitation or by a costly activation of plant defenses. In addition we aim to identify gene regulatory networks that are activated in the three (fully sequenced) partners of the mycorrhizal network Medicago truncatula-Rhizophagus irregularis-Arabidopsis. This will allow us to study in detail key AM fungal genes and molecular processes that are responsible for symbiosis in host plants and for incompatibility in non-host plants, thereby providing novel tools to design new crop protection strategies
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences computer and information sciences knowledge engineering ontology
- natural sciences biological sciences microbiology mycology
- natural sciences biological sciences ecology ecosystems
- natural sciences biological sciences biological behavioural sciences ethology biological interactions
- agricultural sciences agriculture, forestry, and fisheries agriculture
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF-EF-ST - Standard EF
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2014
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
3584 CS Utrecht
Netherlands
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.