Skip to main content

High-Performance Curved Meshing and Unstructured High-Order Galerkin Solvers for High-Fidelity Flow Simulation


High-fidelity flow simulation is one of the main goals to pursue in the research towards exascale computing. This capability will allow a cheaper exploration of aeronautical and automotive designs that fulfill energy consumption and noise emissions policies of the European agencies. In this project, the integration of three high-performance tools will be studied as a promising alternative to perform high-fidelity flow simulations. Specifically, a parallel curved unstructured mesh generator will be integrated with two different parallel high-order stabilized Galerkin solvers. We expect that the novel research on the development and combination of these high-performance tools will provide the physical, numerical, and geometrical accuracy required to perform high-fidelity flow simulations on complex domains defined by industrial computer-aided design models. Furthermore, the project is of major interest in high-performance computing since we expect to improve the scalability of implicit flow solvers by increasing the accuracy for a given computational cost, favoring computation to data transfer, and increasing the ratio of operations that scale linearly with the number of mesh elements. The combined tools will be deployed in a large cluster to obtain flow simulations of practical interest for the aeronautical and automotive industries.

Call for proposal

See other projects for this call

Funding Scheme

MSCA-IF-EF-ST - Standard EF


Calle Jordi Girona 31
08034 Barcelona
Activity type
Research Organisations
EU contribution
€ 158 121,60