Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Spatio-temporal control of the Src kinase activation through Optogenetics in Cell invasion

Objective

Cell signaling is a complex system that coordinates cell actions in response to environmental inputs. Signaling pathways are often seen and investigated as on/off networks, but the reality of the intensities and spatio-temporal organization of these networks has been poorly integrated with the dynamics of cellular outputs in response to specific environmental inputs. In the OSS project we aim to approach this general problem by focusing on a specific cellular function, cell invasion (the hosts area of expertise). We propose to 1) use the formation of invadosomes, characteristic acto-adhesive structures important for cell invasion as a specific cellular function, to address these fundamental questions 2) and target the pleiotropic tyrosine kinase Src that has the ability to induce cell invasion globally by acting on cell adhesion, migration, contractility and invadosome dynamics independently of any environmental regulation, to investigate how a biological signal can be dynamically encoded into specific multifarious cellular outputs. Our hypothesis is that specific spatio-temporal patterns of Src activation could be the basis of its pleiotropicity. Thus, the first step of the OSS project will be to use Src biosensors to observe different patterns of Src activation and correlate them with the dynamics of Src-dependent cellular outputs (such as induction of invadosomes). Secondly, we will directly control spatio-temporal Src activity in live cells using optogenetics, a powerful and innovative approach that will allow us to mimic the observed patterns of Src activation and to create new patterns in order to explore dynamic equilibrium between Src signaling and its specific cellular outputs. This project is at the cross-road of signaling theory in biology, cell biology of acto-adhesive structures and biotechnology fields. The goal of the OSS project is to actively manipulate signals in space and time with the ultimate aim to control dynamic process of cell invasion.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-IF-EF-ST - Standard EF

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-IF-2014

See all projects funded under this call

Coordinator

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 185 076,00
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 185 076,00
My booklet 0 0