Skip to main content

Development and in situ Infrared study of Novel Strained Core-shell Electrocatalysts: Towards an Understanding of the Oxygen Reduction Mechanism

Objective

The oxygen reduction reaction (ORR) is critical in fuel cells (FC), batteries and corrosion. Sluggish kinetics of the ORR remains a key barrier to efficient electricity generation in FC operating on renewable fuels such as hydrogen or alcohols. Poor understanding of the ORR mechanism has hindered development of cost-effective and improved FC catalysts.
This project aims to bring about a step change in development and understanding of ORR catalysts by (i) synthesising metal nanoparticles with a strained surface structure, and (ii) developing and implementing new in situ and operando infrared (IR) spectroscopic techniques to understand how strain impacts the ORR mechanism. Novel strained core-shell Pt-based catalysts will be developed, featuring a core of inexpensive metals including Ni, Co or Cu. For the first time, insight into the ORR mechanism for supported electrocatalysts under realistic catalytic turnover will be gained by modifying an approach to combining IR spectroscopy and electrochemistry developed in the Vincent group.
The University of Oxford is uniquely suited for this ambitious project: the applicant will be hosted in a strong research culture in catalysis, have access to state-of-the-art research infrastructure and technical expertise in spectroscopy and materials characterisation and industrial collaborations. The fellow will receive broad-ranging training in the synthesis of catalysts and surface characterisation. The host team will benefit from her skills in in situ vibrational spectroscopy, especially spectral interpretation of ORR intermediates.
This highly interdisciplinary project combines nanomaterial synthesis, spectroscopy and electrocatalysis, and has strong potential for generation of intellectual property and commercialisation of new catalysts for FC, aiding knowledge transfer between academic and industrial sectors. This will increase Europe’s competitiveness in FC and electrocatalysis, supporting Horizon 2020’s Energy Security goals.

Field of science

  • /natural sciences/chemical sciences/analytical chemistry/spectroscopy
  • /natural sciences/chemical sciences/electrochemistry/electrolysis
  • /engineering and technology/environmental engineering/energy and fuels/fuel cell
  • /natural sciences/chemical sciences/electrochemistry/electrocatalysis
  • /natural sciences/chemical sciences/inorganic chemistry/metals
  • /natural sciences/chemical sciences/analytical chemistry/mass spectrometry
  • /engineering and technology/environmental engineering/energy and fuels/renewable energy
  • /natural sciences/physical sciences/optics/microscopy/electron microscopy
  • /engineering and technology/electrical engineering, electronic engineering, information engineering/electrical engineering/power engineering/electric power generation
  • /natural sciences/chemical sciences/inorganic chemistry/inorganic compounds

Call for proposal

H2020-MSCA-IF-2014
See other projects for this call

Funding Scheme

MSCA-IF-EF-ST - Standard EF

Coordinator

THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Address
Wellington Square University Offices
OX1 2JD Oxford
United Kingdom
Activity type
Higher or Secondary Education Establishments
EU contribution
€ 195 454,80