Skip to main content
European Commission logo
English English
CORDIS - EU research results
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

Heteroepitaxial α-Fe2O3 photoanodes for solar water splitting

Objective

Within the past 40 years, tremendous progress has been made in both the efficiency and cost reduction of photovoltaic (PV) cells that convert sunlight to electricity. However, one of the main limitations of using solar power as an energy source is that the electricity must be used immediately or stored in a secondary device . Photoelectrochemical (PEC) cells combined in tandem with PV cells offer a solution to this problem by using solar radiation (light) to electrolyze water and generate hydrogen which can then be converted to electricity using fuel cells or be used to synthesize and store hydrocarbon fuels by hydrogenation of CO2 . The host’s (Prof. Avner Rothschild) research group at the Technion Institute of Technology in Israel has recently made a landmark advancement in the quest for efficient solar water splitting. The development of a resonant light trapping technique in ultrathin absorbing films on reflective substrates opens the possibility to overcome the greatest challenge facing efficient water splitting in α-Fe2O3 photoanodes, namely, the trade-off between optical absorption length and charge carrier collection length. The Experienced Researcher proposes a novel research plan building upon the invention and involving heteroepitaxial deposition of ultrathin Fe2O3 films for solar water splitting. The proposed research is highly innovative and will develop methods for precise control of thin microstructures and their compositions; these will allow for engineering of films that are nearly free of defects which will improve the efficiency of the photoanodes by suppressing bulk recombination and at the same time, cover novel fundamental research directions such as study of doping on α-Fe2O3 properties without entanglement from microstructural effects, heteroepitaxial multilayer structures with selective charge transport layers, and directional charge transport in α-Fe2O3.

Coordinator

TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY
Net EU contribution
€ 170 509,20
Address
SENATE BUILDING TECHNION CITY
32000 Haifa
Israel

See on map

Activity type
Higher or Secondary Education Establishments
Links
Total cost
€ 170 509,20