Objective
Cells have the extraordinary ability to regulate their morphology, functions and fate to minimal changes in the extracelullar microenvironment. Through multi-protein, cell-matrix adhesions they are able to recognize and respond not only to the chemical diversity of the extracellular matrix (ECM), but also to its physical and topographical features. Mechanical and structural cues encoded in the ECM have an essential role in healthy tissue function where contractility, spreading and proliferation are intricately regulated by cell-cell and cell-matrix adhesion and tension. Unsurprisingly, abnormal ECM mechanics are directly associated with disease and tissue malformation (atherosclerosis, wound healing and tumor formation). Understanding the mechanisms cells use to sense and transduce mechanical signals, as well as the contribution of key players in the process is a pressing, unmet challenge.
To achieve this goal, I here propose the development of an in vitro strategy that allows precise regulation of both biochemical and mechanical parameters in order to isolate their contribution on fundamental endothelial cell (EC) functions. The proposed work will exploit advances in materials science and nanotechnology to modulate with high precision the presentation of highly selective integrin ligands at the nanometer and micrometer length scales, on substrates with tunable viscoelasticity and mechanics. The anticipated effects of integrin engagement and substrate mechanics on ECs will shed light on how the microenvironment affects their proliferation, activation and directional migration, and help correlate these finding with pathological scenarios where blood vessel mechanics and EC integrin expression are deregulated. In summary, the proposed interdisciplinary approach will contribute both advanced tools to study cells in vitro and crucial answers for specific questions relating to EC biology.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- medical and health sciences medical biotechnology genetic engineering
- medical and health sciences clinical medicine cardiology cardiovascular diseases arteriosclerosis
- natural sciences biological sciences cell biology
- medical and health sciences clinical medicine oncology
- medical and health sciences basic medicine physiology homeostasis
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF-EF-ST - Standard EF
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2014
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
80539 MUNCHEN
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.