Objective Sunlight is the most abundant and sustainable energy source available to us. It drives photosynthesis, the source of all food and most energy resources on Earth. Phototrophic organisms use antenna complexes to absorb solar energy, and derived excitation energy migrates towards specialised pigment-protein complexes called reaction centres. Here, photosynthetic electron transfer is initiated, converting solar energy into a form that can be stored and used to power cell metabolism. The absorption characteristics of antenna and reaction centre complexes determine the specific wavelengths of light that can be captured and converted into chemical energy; light at other wavelengths is not used, representing a major limitation of light-harvesting efficiency. Improving this efficiency will play a key role in ensuring food and energy security for the future, a societal challenge to be met by the H2020 programme.EngiNear-IR is a synthetic biology project aimed at exploiting my successful engineering of photopigment biosynthesis in a bacterial host to broaden the range of wavelengths available for photosynthesis. I have diverted the native bacteriochlorophyll a biosynthetic pathway to produce bacteriochlorophyll b, the most strongly red-shifted naturally-occurring photopigment. Incorporation of this foreign pigment into antennae/reaction centres will create novel photosystems that can harness near-infrared regions of the solar spectrum that are currently unused by this host. Apart from its biotechnological potential this research will broaden current understanding of pigment biosynthesis and photosystem assembly, yielding information essential for the improvement of photosynthetic efficiency. The project forms a collaboration between two of the world’s leading photosynthesis research laboratories and exploits the multidisciplinary nature of their studies. The proposed research will provide outstanding research-led training and falls within the H2020 excellence science remit. Fields of science natural sciencesbiological sciencesmicrobiologybacteriologynatural sciencesbiological sciencessynthetic biologynatural sciencesbiological sciencescell biologycell metabolismnatural sciencesbiological sciencesbiochemistrybiomoleculesproteinsenzymesnatural sciencesbiological sciencesbotany Programme(s) H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions Main Programme H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility Topic(s) MSCA-IF-2014-GF - Marie Skłodowska-Curie Individual Fellowships (IF-GF) Call for proposal H2020-MSCA-IF-2014 See other projects for this call Funding Scheme MSCA-IF-GF - Global Fellowships Coordinator THE UNIVERSITY OF SHEFFIELD Net EU contribution € 251 857,80 Address Firth court western bank S10 2TN Sheffield United Kingdom See on map Region Yorkshire and the Humber South Yorkshire Sheffield Activity type Higher or Secondary Education Establishments Links Contact the organisation Opens in new window Website Opens in new window Participation in EU R&I programmes Opens in new window HORIZON collaboration network Opens in new window Other funding € 0,00 Partners (1) Sort alphabetically Sort by Net EU contribution Expand all Collapse all Partner Partner organisations contribute to the implementation of the action, but do not sign the Grant Agreement. THE PENNSYLVANIA STATE UNIVERSITY United States Net EU contribution € 0,00 Address Technology center building 110 16802 7000 University park pa See on map Activity type Higher or Secondary Education Establishments Links Contact the organisation Opens in new window Website Opens in new window Participation in EU R&I programmes Opens in new window HORIZON collaboration network Opens in new window Other funding € 160 130,40