The project has first resulted in a cryogenically-cooled macroscopic moving-mirror device approaching the quantum-noise limit (shown in the left figure), of which publications are in journal review. As part of this work, a new control system architecture was developed for the experiment, that allows flexibility and robustness for control system implementation, with changeable control functions in an in-house developed graphical-user-interface. The Advanced Beta version of this architecture was made publicly downloadable and available for scientific research use. The second result of the project saw the full design and construction of a squeezed light source (shown in the right figure) that is fully compatible with coupling to the macroscopic moving-mirror device experiment. This included characterization and verification of component subsystems, as well as implementation of the same control system architecture. The progress and results of the project have been presented at meetings (such as JMC15 “Optomechanics Colloquium” 2016) and outreach events (such ENS Open Night 2017 Precision Measurement)