Objective
Fast data acquisition devices and servo technologies are essential in multiple processes that require a fast response to a sensor input. They are present in multiple automatic procedures for the accurate functioning of trains, planes, and robotic systems either for domestic or industrial activities. As a result of the research performed in the SM-DNA-Repair project (ERC-206117), we have developed a fully digital acquisition board superior in most specifications to current technology because it combines, in a single board, high speed, high channels count, easy integration and development, and is cost effective. The new board has already been validated in a relevant Atomic Force Microscopy (AFM) environment (TRL5, Technology Readiness Level 5), being able to reproduce results obtained with analogue devices. Now, I aim to turn the output of the SM-DNA-Repair project into a commercial proposition by exploring the commercial potential of the device and by eventually attract capital for its further development.
The ServoTec Proof of Concept project aims are three-fold. First, to perform a market feasibility study of the fast digital servo board developed, in order to exploit the technology integrated into AFM commercial systems for high-speed applications. Second, to make commercially available the technology and to explore other added-value services for wide range applications and customised solutions. Third, to establish the IP position strategy, including the possibility to license the technology to a company that already commercialises data acquisition boards for the general market. These three commercialisation formats will address a global market. Exploratory work regarding competitive analysis, IPR position and strategy and contacts with the industrial sector has been already initiated. The commercial exploitation route, to be defined along the project, will be either through a spin-off or SME, through patent license or agreement for technology exploitation.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences physical sciences optics microscopy
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-POC - Proof of Concept Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2014-PoC
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
28006 MADRID
Spain
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.