European Commission logo
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

A high-fidelity isogeometric simulation methodology for fracture in porous media

Description du projet

Comprendre la propagation des fractures dans les milieux poreux saturés de fluides

Les fractures dans les milieux poreux hétérogènes saturés de fluides constituent une problématique complexe et multi-échelles aux frontières internes mobiles. Malgré le grand nombre de recherches portant sur les fractures dans les matériaux solides, la façon dont les fractures se propagent dans les milieux poreux saturés de fluides est encore relativement mal comprise. Pour résoudre ce problème, le projet PoroFrac, financé par le Conseil européen de la recherche, a pour objectif de mettre au point un outil de simulation capable de prévoir avec précision la propagation des fractures dans de tels milieux. Cette technologie aura des applications directes dans les domaines de la fracturation hydraulique et de l’analyse des tremblements de terre. Ce projet permettra la création d’un puissant outil de simulation doté de capacités prédictives sans précédent pour les problématiques sociétales relatives à l’énergie, à la santé, à l’environnement et à la sécurité.

Objectif

Fracture in heterogeneous, (partially) fluid-saturated porous media is a multi-scale problem with moving internal boundaries, characterised by a high degree of complexity and uncertainty. Nevertheless, in spite of an abundance of research on fracture in solid materials, there is relatively little work on fluid-saturated porous materials. Herein, a robust, flexible simulation technology will be developed for existing faults and propagating fractures in such media. The project consists of three pillars, each of which will have a scientific impact in its own right, complemented by a horizontal, application-oriented theme, which links the pillars, creates synergy and added value, and applies and elaborates the technology for hydraulic fracturing and for fault dynamics during earthquakes. In pillar 1 a mesoscopic, multi-phase model will be developed for fluid transport in cracks which are embedded in a fluid-saturated porous medium. The development of an adaptive spline technology in pillar 2 will enable to capture crack propagation and branching in arbitrary directions on arbitrary discretisations. The reliability method of pillar 3 will make it possible to make a quantitative assessment of the probability that, in a layered, heterogeneous medium, a crack propagates in a certain direction. Its successful completion will pave the way for a wider acceptance and use of reliability methods in fracture analyses, well beyond the primary application area of porous media. The linking theme will showcase some direct applications, in hydraulic fracturing and in earthquake analysis, but has a much wider range of applicability, e.g. for the safety analysis of CO₂ or nuclear waste storage in sub-surface formations, or fracture in fluid-saturated human tissues. Thus, the project will result in a robust simulation tool for fracture propagation in fluid-saturated porous media with unprecedented predictive capabilities for societal issues in energy, health, environment, and safety.

Régime de financement

ERC-ADG - Advanced Grant

Institution d’accueil

THE UNIVERSITY OF SHEFFIELD
Contribution nette de l'UE
€ 2 329 520,00
Adresse
FIRTH COURT WESTERN BANK
S10 2TN Sheffield
Royaume-Uni

Voir sur la carte

Région
Yorkshire and the Humber South Yorkshire Sheffield
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total
€ 2 329 520,00

Bénéficiaires (1)