Objective Lubrication in nature is based on water, but only functions due to the presence of a host of biomolecules. In articular (e.g. hip) joints, it appears that the lubrication system is even more complex than previously believed, involving multiple gradients in structures and properties. Gels and brushes appear to play an important role in biolubrication, while highly confined, highly hydrated charged polymers are key to the important mechanical properties of cartilage. Components such as hyaluronic acid, glycoproteins, and lipids all appear to act synergistically to yield the extraordinary tribological properties of the cartilage-synovial-fluid system. POLYBIOLUB seeks to mimic the mechanisms revealed by the latest studies of cartilage, by means of the synthesis of functionally similar polymeric structures. This is a completely novel approach to the problem, which has the promise not only of revealing structural dependencies of cartilage function, but also of yielding radically new, biomimetic, lubricious, low-wear materials that could find applications in either industrial or clinical environments. The principal synthetic tool will be controlled radical polymerization in a flow environment, involving in situ growth monitoring, followed by a series of postmodification and grafting steps, to yield structures that are lubricious, wear resistant, and tough. These efforts will be accompanied by extensive characterization of composition, structure and mechanical/tribological properties at each stage. Our group has extensive experience in controlled radical polymerization in a flow system, postmodification of polymers, brush-gel and layered polymer systems,. We also have over a decade of experience in water-based lubrication, natural lubrication, synovial-joint studies, and multidimensional gradient systems. The challenge now is to combine these skills to fabricate a completely new biomimetic material. Fields of science engineering and technologymechanical engineeringtribologylubricationnatural scienceschemical sciencespolymer sciencesnatural sciencesphysical sciencesopticsmicroscopynatural sciencesbiological sciencesbiochemistrybiomoleculeslipidsnatural sciencesphysical sciencesopticsspectroscopyabsorption spectroscopy Programme(s) H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC) Main Programme Topic(s) ERC-ADG-2014 - ERC Advanced Grant Call for proposal ERC-2014-ADG See other projects for this call Funding Scheme ERC-ADG - Advanced Grant Coordinator EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH Net EU contribution € 2 456 570,00 Address Raemistrasse 101 8092 Zuerich Switzerland See on map Region Schweiz/Suisse/Svizzera Zürich Zürich Activity type Higher or Secondary Education Establishments Links Contact the organisation Opens in new window Website Opens in new window Participation in EU R&I programmes Opens in new window HORIZON collaboration network Opens in new window Other funding € 0,00 Beneficiaries (1) Sort alphabetically Sort by Net EU contribution Expand all Collapse all EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH Switzerland Net EU contribution € 2 456 570,00 Address Raemistrasse 101 8092 Zuerich See on map Region Schweiz/Suisse/Svizzera Zürich Zürich Activity type Higher or Secondary Education Establishments Links Contact the organisation Opens in new window Website Opens in new window Participation in EU R&I programmes Opens in new window HORIZON collaboration network Opens in new window Other funding € 0,00