Objective With the CoRoT & Kepler data analysed, the time is optimal to move from observational asteroseismology to innovative stellar modelling of the steal factories of the Universe. With MAMSIE, we follow the footsteps of helioseismologists some 30 years after them, but this time we shall be developing inversion methods for stellar structure based on gravity-mode oscillations that probe the deep stellar interior. MAMSIE will lead to new models for a variety of single and binary stars with masses between 3 and 30 M⊙ whose space photometry and high-resolution spectroscopy reveal sufficient seismic information on their gravity modes to invert the frequencies and compute the stars’ structure. In contrast to the conventional theoretical approach to stellar evolution, the data-driven approach of MAMSIE will allow us to include angular momentum transport due to internal gravity waves, as well as mixing prescriptions for turbulent entrainment, from coupling of the output of 3D hydrodynamical simulations of these phenomena to specialised seismic observables of relevance for massive stars. Our sample includes slow and fast rotators, with and without a magnetic field, with and without a stellar wind. The new models will be placed in an evolutionary context for optimal assessment of the evolution of internal rotation, angular momentum, and chemical mixing throughout stellar life of massive stars. The output of the stellar modelling will provide fundamentals for all topics in modern astrophysics that rely on massive star models. MAMSIE is overarching and will require a multidisciplinary team led by an expert in gravity-mode oscillations working in close collaboration with a 3D hydrodynamics expert; it will offer a highly competitive environment for PhD and postdoctoral research on the astrophysics of massive stars. Fields of science natural sciencesphysical sciencesastronomystellar astronomyasteroseismologynatural sciencesphysical sciencesastronomygalactic astronomysolar astronomynatural sciencesphysical sciencesastronomyobservational astronomy Programme(s) H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC) Main Programme Topic(s) ERC-ADG-2014 - ERC Advanced Grant Call for proposal ERC-2014-ADG See other projects for this call Funding Scheme ERC-ADG - Advanced Grant Coordinator KATHOLIEKE UNIVERSITEIT LEUVEN Net EU contribution € 2 498 941,00 Address Oude markt 13 3000 Leuven Belgium See on map Region Vlaams Gewest Prov. Vlaams-Brabant Arr. Leuven Activity type Higher or Secondary Education Establishments Links Contact the organisation Opens in new window Website Opens in new window Participation in EU R&I programmes Opens in new window HORIZON collaboration network Opens in new window Other funding € 0,00 Beneficiaries (1) Sort alphabetically Sort by Net EU contribution Expand all Collapse all KATHOLIEKE UNIVERSITEIT LEUVEN Belgium Net EU contribution € 2 498 941,00 Address Oude markt 13 3000 Leuven See on map Region Vlaams Gewest Prov. Vlaams-Brabant Arr. Leuven Activity type Higher or Secondary Education Establishments Links Contact the organisation Opens in new window Website Opens in new window Participation in EU R&I programmes Opens in new window HORIZON collaboration network Opens in new window Other funding € 0,00