Objective
Development of fuel injection equipment (FIE) able to reduce pollutant emissions from liquid-fueled transportation and power generation systems is a top industrial priority in order to meet the forthcoming EU 2020 emission legislations. However, design of new FIE is currently constrained by the incomplete physical understanding of complex micro-scale processes, such as in-nozzle cavitation, primary and secondary atomization. Unfortunately, today’s computing power does not allow for an all-scale analysis of these processes. The proposed program aims to develop a large eddy simulation (LES) CFD model that will account for the influence of unresolved sub-grid-scale (SGS) processes to engineering scales at affordable computing time scales. The bridging parameter between SGS and macro-scales flow processes is the surface area generation/destruction occurring during fuel atomisation; relevant SGS closure models will be developed through tailored experiments and DNS and will be implemented into the LES model predicting the macroscopic spray development as function of the in-nozzle flow and surrounding air conditions. Validation of the new simulation tool, currently missing from today’s state-of-the-art models, will be performed against new benchmark experimental data to be obtained as part of the programme, in addition to those provided by the industrial partners. This will demonstrate the applicability of the model as an engineering design tool suitable for IC engines, gas turbines, fuel burners and even rocket engine fuel injectors. The proposed research and training programme will be undertaken by 15ESRs funded by the EU and one ESR funded independently from an Australian partner; ESRs will be recruited/seconded by universities, research institutes and multinational fuel injection and combustion systems manufacturers that will represent in the best possible way the international, interdisciplinary and intersectoral requirements of the Marie Curie Action guidelines.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences physical sciences classical mechanics fluid mechanics fluid dynamics
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering computer hardware supercomputers
- engineering and technology environmental engineering energy and fuels
- natural sciences mathematics applied mathematics numerical analysis
- natural sciences computer and information sciences software software applications simulation software
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.1. - Fostering new skills by means of excellent initial training of researchers
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-ITN-ETN - European Training Networks
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-ITN-2015
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
EC1V 0HB LONDON
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.