Objective
CELTA: Convergence of Electronics and Photonics Technologies for Enabling Terahertz Applications aims to produce the next generation of researchers who will enable Europe to take a leading role in the multidisciplinary area of utilizing Terahertz technology for applications involving components and complete systems for sensing, instrumentation, imaging, spectroscopy, and communications. All these technologies are key to tackle important solutions in a large number of focus areas relevant for the societal challenges identified in the Horizon2020 work programme. To achieve this objective, CELTA is comprised of eleven leading research institutions and assembled a comprehensive research training programme for all the fifteen early stage researchers (ESRs). CELTA integrates multidisciplinary scientific expertise, complementary skills, and experience working in academia and industry to empower ESRs to work in interdisciplinary teams, integrate their activities, share expertise, and promote a vision of a converged co-design and common engineering language between electronics and photonics for Terahertz technologies. Therefore, CELTA will introduce the strategy of converged electronics and photonics co-design in its research program and makes a special effort on establishing a common engineering language in its training program across the electronics, photonics and applications disciplines. We believe this common engineering language and converged co-design is mandatory to make the next logical step towards efficient and innovation solutions that can reach the market. The detailed compendium of lectures on state-of-the art technology, soft skills and entrepreneurship is accompanied by a research programme that focuses on THz key technologies. CELTA ESRs will develop three demonstrators: beam steering technology for communication applications, a photonic vector analyser for spectroscopy and materials characterization, and a THz imager for sensing applications.
Fields of science
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
- engineering and technologymaterials engineeringfibers
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectronic engineeringsensorsoptical sensors
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectronic engineeringsignal processing
- engineering and technologyelectrical engineering, electronic engineering, information engineeringinformation engineeringtelecommunicationsradio technologyradar
- natural sciencesphysical sciencesopticsfibre optics
Programme(s)
Funding Scheme
MSCA-ITN-ETN - European Training NetworksCoordinator
5612 AE Eindhoven
Netherlands