Objective In the last one or two decades, language technology has achieved a number of important successes, for example, producing functional machine translation systems and beating humans in quiz games. The key bottleneck which prevents further progress in these and many other natural language processing (NLP) applications (e.g. text summarization, information retrieval, opinion mining, dialog and tutoring systems) is the lack of accurate methods for producing meaning representations of texts. Accurately predicting such meaning representations on an open domain with an automatic parser is a challenging and unsolved problem, primarily because of language variability and ambiguity. The reason for the unsatisfactory performance is reliance on supervised learning (learning from annotated resources), with the amounts of annotation required for accurate open-domain parsing exceeding what is practically feasible. Moreover, representations defined in these resources typically do not provide abstractions suitable for reasoning. In this project, we will induce semantic representations from large amounts of unannotated data (i.e. text which has not been labeled by humans) while guided by information contained in human-annotated data and other forms of linguistic knowledge. This will allow us to scale our approach to many domains and across languages. We will specialize meaning representations for reasoning by modeling relations (e.g. facts) appearing across sentences in texts (document-level modeling), across different texts, and across texts and knowledge bases. Learning to predict this linked data is closely related to learning to reason, including learning the notions of semantic equivalence and entailment. We will jointly induce semantic parsers (e.g. log-linear feature-rich models) and reasoning models (latent factor models) relying on this data, thus, ensuring that the semantic representations are informative for applications requiring reasoning. Fields of science natural sciencescomputer and information sciencesartificial intelligencemachine learningsupervised learningnatural sciencescomputer and information sciencesdata sciencenatural language processing Programme(s) H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC) Main Programme Topic(s) ERC-StG-2015 - ERC Starting Grant Call for proposal ERC-2015-STG See other projects for this call Funding Scheme ERC-STG - Starting Grant Coordinator THE UNIVERSITY OF EDINBURGH Net EU contribution € 1 289 942,50 Address Old college, south bridge EH8 9YL Edinburgh United Kingdom See on map Region Scotland Eastern Scotland Edinburgh Activity type Higher or Secondary Education Establishments Links Contact the organisation Opens in new window Website Opens in new window Participation in EU R&I programmes Opens in new window HORIZON collaboration network Opens in new window Other funding € 0,00 Beneficiaries (2) Sort alphabetically Sort by Net EU contribution Expand all Collapse all THE UNIVERSITY OF EDINBURGH United Kingdom Net EU contribution € 1 289 942,50 Address Old college, south bridge EH8 9YL Edinburgh See on map Region Scotland Eastern Scotland Edinburgh Activity type Higher or Secondary Education Establishments Links Contact the organisation Opens in new window Website Opens in new window Participation in EU R&I programmes Opens in new window HORIZON collaboration network Opens in new window Other funding € 0,00 UNIVERSITEIT VAN AMSTERDAM Netherlands Net EU contribution € 167 242,50 Address Spui 21 1012WX Amsterdam See on map Region West-Nederland Noord-Holland Groot-Amsterdam Activity type Higher or Secondary Education Establishments Links Contact the organisation Opens in new window Website Opens in new window Participation in EU R&I programmes Opens in new window HORIZON collaboration network Opens in new window Other funding € 0,00