Objective
Statistical mechanics, a century-old theory, is probably one of the most powerful constructions of physics. It predicts that the equilibrium properties of any system composed of a large number of particles depend only on a handful of macroscopic parameters, no matter how the particles interact with each other. But the question of how many-body systems relax towards such equilibrium states remains largely unsolved. This problem is especially acute for quantum systems, which evolve in a much larger mathematical space than the classical space-time and obey non-local equations of motion. Despite the formidable complexity of quantum dynamics, recent theoretical advances have put forward a very simple picture: the dynamics of closed quantum many-body systems would be essentially local, meaning that it would take a finite time for correlations between two distant regions of space to reach their equilibrium value. This locality would be an emergent collective property, similar to spontaneous symmetry breaking, and have its origin in the propagation of quasiparticle excitations. The fact is, however, that only few observations directly confirm this scenario. In particular, the role played by the dimensionality and the interaction range is largely unknown. The concept of this project is to take advantage of the great versatility offered by ultracold atom systems to investigate experimentally the relaxation dynamics in regimes well beyond the boundaries of our current knowledge. We will focus our attention on two-dimensional systems with both short- and long-range interactions, when all previous experiments were bound to one-dimensional systems. The realisation of the project will hinge on the construction on a new-generation quantum gas microscope experiment for strontium gases. Amongst the innovative techniques that we will implement is the electronic state hybridisation with Rydberg states, called Rydberg dressing.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences physical sciences condensed matter physics quasiparticles
- natural sciences chemical sciences inorganic chemistry alkaline earth metals
- natural sciences physical sciences optics microscopy
- natural sciences physical sciences condensed matter physics quantum gases
- natural sciences physical sciences optics laser physics
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-STG - Starting Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2015-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
75794 PARIS
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.