Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Electron quantum optics in Graphene

Objective

Quantum computing is based on the manipulation of quantum bits (qubits) to enhance the efficiency of information processing. In solid-state systems, two approaches have been explored:

• static qubits, coupled to quantum buses used for manipulation and information transmission,
• flying qubits which are mobile qubits propagating in quantum circuits for further manipulation.

Flying qubits research led to the recent emergence of the field of electron quantum optics, where electrons play the role of photons in quantum optic like experiments. This has recently led to the development of electronic quantum interferometry as well as single electron sources. As of yet, such experiments have only been successfully implemented in semi-conductor heterostructures cooled at extremely low temperatures. Realizing electron quantum optics experiments in graphene, an inexpensive material showing a high degree of quantum coherence even at moderately low temperatures, would be a strong evidence that quantum computing in graphene is within reach.
One of the most elementary building blocks necessary to perform electron quantum optics experiments is the electron beam splitter, which is the electronic analog of a beam splitter for light. However, the usual scheme for electron beam splitters in semi-conductor heterostructures is not available in graphene because of its gapless band structure. I propose a breakthrough in this direction where pn junction plays the role of electron beam splitter. This will lead to the following achievements considered as important steps towards quantum computing:

• electronic Mach Zehnder interferometry used to study the quantum coherence properties of graphene,
• two electrons Aharonov Bohm interferometry used to generate entangled states as an elementary quantum gate,
• the implementation of on-demand electronic sources in the GHz range for graphene flying qubits.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-STG - Starting Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2015-STG

See all projects funded under this call

Host institution

COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 500 000,00
Address
RUE LEBLANC 25
75015 PARIS 15
France

See on map

Region
Ile-de-France Ile-de-France Paris
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 500 000,00

Beneficiaries (1)

My booklet 0 0