Periodic Reporting for period 5 - 2D-CHEM (Two-Dimensional Chemistry towards New Graphene Derivatives)
Reporting period: 2022-06-01 to 2022-12-31
The specific objectives of the projects are:
1. Design and preparation of new stable graphene derivatives with high dispersability in polar environments, controllable band gap and sustainable magnetic ordering from FG and fluorinated graphenes.
2. Identification of the application potential of the as-prepared derivatives and hybrids in (electrochemical and photoluminescence) sensing, magnetic delivery and catalytic applications.
3. Gain a deeper understanding of CF chemistry and identification of (dis)similarities with the chemistry of perfluorinated haloalkanes with the aim of identifying new rules for 2D chemistry, which will help to target the synthesis of 2D materials with desired properties.
The project continued with the mission also in the second period. We deeply analyzed mechanism of fluorographene (FG) reactivity and showed that defects stand behind the unexpected reactivity of FG (Nanoscale, 10, 4696-4707, 2018). We utilized the gained knowledge in control of FG functionalization by solvent (J. Phys. Chem. Lett., 9(13), 3580–3585, 2018). Via Hirsch-Bingel reaction on FG, we prepared new graphene derivative, which can be used as supercapacitor electrode materials due to its very high specific capacitance (Adv. Funct. Mater., 28(29), 1801111, 2018). Later we synthetized another supercapacitor electrode material and showed fine tuning of its properties by duration of chemical reaction (Chem. Mater., 31, 13, 4698-4709, 2019). We identified new synthetic routes via FG chemistry utilizing Sonogashira C-C cross coupling reaction (Chem. Commun., 55, 1088-1091, 2019) and leading to dual-functionalized graphene (Carbon, 145, 251-258, 2019). Utilizing previously developed graphene derivatives graphene acid and cyanographene, we prepared very efficient catalyst for arene C-H insertion (Carbon, 143, 318-328, 2018) and single-atomic catalyst for oxidative amine coupling (Adv. Mater., 31(17), 1900323, 2019). Full list of publications is available on: http://www.2dchem.org/publications/.