Skip to main content

Fast rAdio technologieS for uninterrupTed TRAin to traCKside communications

Periodic Reporting for period 1 - FAST-TRACKS (Fast rAdio technologieS for uninterrupTed TRAin to traCKside communications)

Reporting period: 2015-07-01 to 2015-12-31

The urbanization trends of the suburban metropolitan areas has increased exponentially the demand for high-capacity rail infrastructure, which require interoperable systems and services, with high standards of safety and reliability. At the same time, the railway technological infrastructure and the related services require a high level of innovation, especially in the field of telecommunication systems and rail control, which is still made using traditional systems, based on wired or relay on electromechanical technology.
In this context, the wireless telecommunication networks are playing an increasingly important role for the known functional, installation time and maintenance features: they are potentially able to develop robust systems with high redundancy that can simultaneously vehicular traffic data for automatic train control and the “massive” transfer of security and passengers control information.
The different existing solutions on the market are “general purpose” solutions, not specifically developed for the railway market, or systems characterized by static architecture for only indoor or outdoor functioning, with difficulty to adapt to the needs of mobility and the dynamics of a complex rail system.
The business idea underpinning FAST-TRACKS project proposes the development and commercialization of a low cost system, which allows addressing the main problems faced at present in the integration of a traditional Wi-Fi system within the railway technological infrastructure.
The main objectives of the feasibility study financed under SME Instrument Phase I were:
• realize the final prototype and test it in relevant environment;
• define the certification phases;
• identify all measures to protect company’s knowledge;
• fine tune the executive dissemination and exploitation plan;
• elaborate the executive business plan.
All the envisaged objectives have been achieved with positive results, as described below and summarized in the conclusions of the technical report.
FAST-TRACKS project was designed to cover a functional gap in the railway radio telecommunications infrastructure. The project is based on the design of a radio supporting most different Wi-Fi, Cellular and LTE standards at the same time. In this scenario have been developed a prototype of the standard Wi-Fi like IEEE 802.11 ac and LTE technologies through two different approaches, which demonstrate the technical feasibility of the proposed idea and a large applicability of the system in the railway telecommunication infrastructures.
The main advantages of the multi transport radio proposed are based on two pillars:
• high adaptability of the radio to the continuous evolution of wireless standards and cellular technologies;
• realization of an innovative and not yet on the market product.
Whereas the main disadvantage consists in the interference due to the use of unlicensed bands and computational complexity.
The implementation of the FAST-TRACKS radio prototype was pursued with two different approaches as shown in Figure 1.
During the technical tasks of the FAST-TRACKS project Comesvil has completed the technical feasibility study, the implementation and the test of a first prototype on a real railway test-track.
The first prototype of the system was designed before the beginning of the FAST-TRACKS project, performing the following prerequisite tasks:
• analysis of network processor board based on OEM Wi-Fi technology;
• selection of a dual-radio IEEE 802.11 abgn (2.4-5.8 GHz);
• assembly of the dual radio in IP67 housing.
During Phase 1 of the project have been carried out the following activities:
• dual radio configuration (abgn) with firmware OpenWRT;
• first test campaign on outdoor test-track railway in Maddaloni;
• analysis of the IEEE 802.11 technology ac and related modules mini-pci;
• dual radio configuration (AC) with the firmware OpenWRT;
• second campaign or outdoor tests on railway-track in Maddaloni with technology IEEE 802.11 ac;
• analysis of LTE and its modules mini-pci.
The following subsections briefly report the synthesis of the main activities developed within the technical feasibility study.

1.1 Comesvil Radio architecture and functional requirements
Given the results of the non-performing radio equipment on the market, and the high cost of high-end products, it was decided to design a new radio system with a set of features specially designed to have robust, reliable and secure communications in railway context.
The basic architecture of the mentioned device is composed of a radio core, which implements the WiFi/LTE technologies to cover all the aspects related to a secure and reliable communication system, an internal hub, a power supply converting AC to DC directly inside the Access Box and finally an Ethernet to optical media converter.
As mentioned above, the implementation of the radio core was pursued with two different approaches:
• using a common OEM network processor and integrating different hardware modules to implement IEEE 802.11 ac and LTE;
• using a powerful Software Defined Radio board and implementing the IEEE 802.11 ac and LTE.
The first Comesvil Radio is implemented using an OEM product (Original Equipment Manufacturer) based on Atheros network processor AR9344. The board is equipped with a MiniPCI connector which permits the integration of additional modules implementing the standards 802.11abg/802.11n/802.11ac and Long Term Evolution (LTE). The whole system is managed via Linux-kernel extended to support additional drivers and multiple transport technologies. The OpenWRT completes the software equipment of the radio, providing an easy to customize management system.
The second Comesvil Radio is implemented using a powerful Software Defined Radio based on ARM Cortex-M4 microcontroller. The board is completely programmable in GNU Radio environment and permits to implement each kind of radio device working in
A deeper analysis of the state of the art have been provided in the technical feasibility study.
The need to achieve increasingly higher throughput values in order to maximize the quality of the services offered in the wireless industry, has led over the years to a growing improvement of 802.11 throughput maximum allowed.
Nowadays, the market offers a wide range of Wi-Fi radio devices conceived for mobile radio networks. However, although in recent years there has been the introduction of 802.11ac most of the current producers offer as spearhead of their technologies the IEEE 802.11n standard.
It is possible to divide the wireless products offered on the market into two brackets: mid-range products and high-end products, with specific features detailed in the feasibility study. The radio equipment analyzed in the context of the FAST-TRACKS project belong to the following manufacturers: Moxa, Fluidmesh, Acksys.
These products have been compared with the product prototyped during the project: Comesvil Radio.
Based on the state of the art analysis, it is possible to classify Moxa equipment as low-end product, while the equipment of Fluidmesh and Acksys as middle/high-end products. From an initial comparative analysis of the features of different products selected, appears that the high-end products are the most efficient and therefore the most suitable for the use in an industry that requires security and resiliency features such as rail. On the other hand, these products do not always match with the needs of the market and with the economically sustainable manufacturing of systems.

To highlight the economic benefits that can be derived from the planning of a wireless network based on Comesvil Radio, a design example is provided regarding the Thessaloniki Metro project.
The performance in terms of throughput are different among different competitors’ devices. Once fixed the type of wayside network configuration for the Thessaloniki project and, assuming the same configuration for all the analysed devices, it is possible to summarize the economic benefits of Comesvil Radio.
It may be observed that the cost analysis is strictly related to the radio technology involved.
The best technical and economic solution is represented by Comesvil disruptive idea: the Comesvil Radio. It is justified by two reasons:
• Comesvil Radio is developed in house and this makes the product very appealing from a price point of view and
• it implements a technology actually not yet present in the railway telecommunication market, i.e. the IEEE 802.11ac.
In the Thessaloniki Metro project the Comesvil Radio allows to save about the 82% of the costs with respect to the most costly solution. Thus, the Comesvil Radio working with IEEE 802.11 ac technology represents the best technical and economic solution for the Thessaloniki Metro project.

The company’s strategy is anchored on the development of advanced technologies in order to ensure growth and international competitiveness, increase its productivity by optimizing costs and resources. Comesvil makes efforts to improve the quality of its services and products, to reduce the impact of its activity on the environment and to prevent health hazards and grant the safety of its employees as well as of its clients. At the same time, the company aims to improve continuously its technologically innovative and economically competitive products and services to be in step with the new technologies.
The management team of Comesvil, monitoring the key drivers that are influencing the health of the rail market (i.e. demographic and technological drivers, environmental awareness, public funding and market liberalization), has identified several field opportunities for the development and offer of new products on the market.
The opportunities identified by Comesvil
Two-fold approach for the implementation of FAST-TRACKS radio prototype