Livrables
The MAGNEURON brochure will be a dissemination way with public information on the project activities, objectives and progress that will be distributed whenever possible. Quantity of printed brochures will be defined by the Dissemination Plan. The logo, the design and the graphical chart will be consistent with the Website and other communication supports (internal and external).
Dispersions of silica core shell MNPsD22 is dedicated to the coating of maghemite nanoparticles synthesized in task 1 by a silica shell If this synthesis pathway is well established for smaller particles the protocol must be adapted to the big 1214 up to 20 nm ones that will be used in this project Amines functional groups will be included on the surface of coreshell nanoparticles so as to be used by the other members of the consortium Near infrared Fluorescent probes Cyanine 55 for instance will be included in the silica shell during synthesis for optical detection of nanoparticles in cellsThe quantities deliverables will be in the magnitude of 2050 mL at 01 M of iron content Sample should be available in the first 68 months after the beginning of the project
Activation of intracellular membrane-anchored small G-proteins by cytosolic MNPsMNPs functionalized with activated Ras/Rac (or their GEF activators) will be delivered into the cytoplasm of cells transfected with biosensors (Raichu-Ras, Raichu-Rac). Using the spaceMode approach, we will test for asymmetrical activation of downstream cytoskeletal targets using confocal fluorescence microscopy. Nonfunctionalized MNP will serve as negative control.
Characterization of magnetic manipulation in cellsWe will characterize the forces required to manipulate cells inside cells, the kinetics with which they can be displaced through the cells. These results will be analyzed as a function of the colloidal and biofunctional properties of the nanoparticles.
Dispersions of stabilized MNPsThis deliverable is synthesized big magnetic nanoparticles (from 12-14 and up to 20 nm in diameter) using an alternative Massart’s synthesis pathway. The necessary size sorting will be achieved in order to gain in monodispersity. For the full project, 200 mL at 1M of iron content is expected for each diameter selected. This will need several synthesis batches, as long as size sorting decreases strongly the quantity of expected nanoparticles. Concomitantly, different coatings will be applied to these nanoparticles. Citrate ligands, as well as poly(sodium acrylate) (PAA) and poly(sodium acrylate-co-sodium maleate) (PAAMA) polyelectrolytes will be used to stabilize these nanoparticles in biocompatible solvents. These coated nanoparticles will be used in task 2.2 and 2.3. Sample should be available in the first 4 months after the beginning of the project.
Identification and assessment of neuronal differentiation and axonal outgrowthCells will be identified using immunocytochemistry with the following specific antibodies: to assess neuronal differentiation - beta-III-tubulin, Map2ab; and midbrain dopaminergic neurons – tyrosine hydroxylase, vesicular monoamine transporter (VMAT), dopamine transporter, Aromatic L-amino acid decarboxylase (AADC), and Nurr1. Axonal outgrowth will be measured and quantified from digital images of beta-III-tubulin labeled cells.
Data Management PlanData Management Plan will be written on the base of the EC tool. All the non-sensitivity data will be stored in an open repository.
Dissemination Strategy planThis document will report on the dissemination and communication strategies implemented by the MAGNEURON consortium, with regard to the described communication activities in DoA. A consistent graphical chart will be proposed for communication and dissemination supports. It shall be consistent with the IPR strategy plan.
Protocols for activation of neuronal differentiation through key receptor tagsKey receptors will be tested which can control neuronal cell differentiation e.g. TREK channels, Fz receptors. Magnetic particles will be coated with receptor tags and attached to receptors on the cell membrane. In response to oscillating fields, the cells will be induced to differentiate in vitro.
Recombinant ferritin-based MNPsWe will deliver a protocol describing (i) expression and purification of recombinant ferritin particles, (ii) loading with magnetic iron oxide core and (iii) biochemical functionalization of magneto ferritin particles.
Systematic analysis of the cell differentiation response to signalling perturbationsIn vitro tests to define the differentiation responses of dopamine neurons in culture and in 3D systems including brain slices. Different regimes in 2D and 3D will be tested and optimized to promote neuronal regeneration.
Intermediate workshopThe MAGNEURON consortium will organise an intermediate workshop during the project to communicate the intermediate results and generate synergies with the scientific community.
Dissemination Strategy report 1This document will report on the dissemination and communication activities carried out in the period from M1 to M12 by the MAGNEURON consortium, with regard to the described communication activities in DoA.
Final workshopThe final workshop will allow communicating the project results to a large scientific and industrial community.
Dissemination Strategy report 2This document will report on the dissemination and communication activities carried out in the period from M13 to M30 by the MAGNEURON consortium, with regard to the described communication activities in DoA.
Final Dissemination Strategy reportThis document will report on the dissemination and communication activities carried out in the period from M31 to M48 by the MAGNEURON consortium, with regard to the described communication activities in DoA.
We will develop a device for parallelized magnetic stimulation of multiple cells, based on microfabrication of micromagnets combined to micropatterning, enabling high-throughput assays. We will characterize the magnetic and optical performances of the devices.
The MAGNEURON web site will provide public information about the project, its objectives, the partners, the advancements, and the organised workshop and provide an entry contact point with any industry or organism interested in the project results.
Updated Data Management Plan will be consolidated at the end of the project.
Publications
Auteurs:
Veena Nambiar Potheraveedu, Miriam Schöpel, Raphael Stoll, Rolf Heumann
Publié dans:
Biological Chemistry, Numéro 398/5-6, 2017, Page(s) 589-606, ISSN 1431-6730
Éditeur:
Walter de Gruyter GmbH & Co. KG
DOI:
10.1515/hsz-2016-0312
Auteurs:
Fred Etoc, Elie Balloul, Chiara Vicario, Davide Normanno, Domenik Liße, Assa Sittner, Jacob Piehler, Maxime Dahan, Mathieu Coppey
Publié dans:
Nature Materials, Numéro 17/8, 2018, Page(s) 740-746, ISSN 1476-1122
Éditeur:
Nature Publishing Group
DOI:
10.1038/s41563-018-0120-7
Auteurs:
Cornelia Monzel, Chiara Vicario, Jacob Piehler, Mathieu Coppey, Maxime Dahan
Publié dans:
Chemical Science, Numéro 8/11, 2017, Page(s) 7330-7338, ISSN 2041-6520
Éditeur:
Royal Society of Chemistry
DOI:
10.1039/c7sc01462g
Auteurs:
Domenik Liße, Cornelia Monzel, Chiara Vicario, John Manzi, Isabelle Maurin, Mathieu Coppey, Jacob Piehler, Maxime Dahan
Publié dans:
Advanced Materials, Numéro 29/42, 2017, Page(s) 1700189, ISSN 0935-9648
Éditeur:
United Nations Industrial Developement Organization
DOI:
10.1002/adma.201700189
Auteurs:
Dennis Paliga, Fabian Raudzus, Stephen H. Leppla, Rolf Heumann, Sebastian Neumann
Publié dans:
Molecular Neurobiology, Numéro no. 12035, 2018, ISSN 0893-7648
Éditeur:
Humana Press, Inc.
DOI:
10.1007/s12035-018-1311-6
Auteurs:
Hendrik Schöneborn, Fabian Raudzus, Mathieu Coppey, Sebastian Neumann, Rolf Heumann
Publié dans:
International Journal of Molecular Sciences, Numéro 19/12, 2018, Page(s) 4052, ISSN 1422-0067
Éditeur:
Multidisciplinary Digital Publishing Institute (MDPI)
DOI:
10.3390/ijms19124052
Auteurs:
Meray Serdar, Josephine Herz, Karina Kempe, Elke Winterhager, Holger Jastrow, Rolf Heumann, Ursula Felderhoff-Müser, Ivo Bendix
Publié dans:
Frontiers in Neurology, Numéro 9, 2018, ISSN 1664-2295
Éditeur:
Frontiers Research Foundation
DOI:
10.3389/fneur.2018.00175
Auteurs:
Drees, C.
Raj, A. N.
Kurre, R.
Busch, K. B.
Haase, M.
Piehler, J.
Publié dans:
Angew. Chem. Int. Ed. Engl., Numéro 55 (38) Sep 12, 2016, Page(s) 11668-11672, ISSN 1433-7851
Éditeur:
John Wiley & Sons Ltd.
DOI:
10.1002/anie.201603028
Auteurs:
Hendrik Schöneborn, Fabian Raudzus, Emilie Secret, Nils Otten, Aude Michel, Jérome Fresnais, Christine Ménager, Jean-Michel Siaugue, Holm Zaehres, Irmgard D. Dietzel, Rolf Heumann
Publié dans:
Journal of Functional Biomaterials, Numéro 10/3, 2019, Page(s) 32, ISSN 2079-4983
Éditeur:
MDPI AG
DOI:
10.3390/jfb10030032
Auteurs:
Michael Rotherham, Tasmin Nahar, Timothy Goodman, Neil Telling, Monte Gates, Alicia El Haj
Publié dans:
Advanced Biosystems, 2019, Page(s) 1900091, ISSN 2366-7478
Éditeur:
Wiley-VCH Verlag GmbH & Co. KGaA
DOI:
10.1002/adbi.201900091
Auteurs:
Loïc Toraille, Koceila Aïzel, Élie Balloul, Chiara Vicario, Cornelia Monzel, Mathieu Coppey, Emilie Secret, Jean-Michel Siaugue, João Sampaio, Stanislas Rohart, Nicolas Vernier, Louise Bonnemay, Thierry Debuisschert, Loïc Rondin, Jean-François Roch, Maxime Dahan
Publié dans:
Nano Letters, Numéro 18/12, 2018, Page(s) 7635-7641, ISSN 1530-6984
Éditeur:
American Chemical Society
DOI:
10.1021/acs.nanolett.8b03222
Auteurs:
Manon Debayle, Elie Balloul, Fatimata Dembele, Xiangzhen Xu, Mohamed Hanafi, Francois Ribot, Cornelia Monzel, Mathieu Coppey, Alexandra Fragola, Maxime Dahan, Thomas Pons, Nicolas Lequeux
Publié dans:
Biomaterials, Numéro 219, 2019, Page(s) 119357, ISSN 0142-9612
Éditeur:
Pergamon Press Ltd.
DOI:
10.1016/j.biomaterials.2019.119357
Auteurs:
Marie Kappen, Domenik Liße, Jacob Piehler
Publié dans:
Gesundheit für Mensch, Tier und Pflanze, Numéro 2019, 2019, Page(s) 16
Éditeur:
Arbeitskreis der Technologietransferstellen niedersächsischer Hochschulen
Recherche de données OpenAIRE...
Une erreur s’est produite lors de la recherche de données OpenAIRE
Aucun résultat disponible