Objective
The feedback between climate and the land carbon (C) cycle poses one of the largest uncertainties in climate change projections. FIBER targets the unresolved challenge for Dynamic Global Vegetation Models (DGVM) to simulate effects of soil fertility and nutrient deposition on biomass productivity (BP) and the land C balance. Accumulating evidence documents how plants adjust their growth strategies and C allocation under multiple limiting resources. Current DGVMs lag behind these new insights, produce widely diverging results for C cycling and nutrient limitation under future scenarios and fail to explain the observed land C sink. This work will provide a new global modelling approach to simulating flexible plant C allocation following optimality principles. A better understanding of the controls on BP is crucial for assessing climate change impacts on ecosystem services and to reduce uncertainty in C cycle and climate change projections.
I will develop a new type of plant growth model to predict increased root growth and export of labile C to soil biota on infertile soils and under low N inputs, consistent with powerful data from forest inventories and ecosystem manipulation experiments. By accounting for trade-offs between different growth strategies and a C cost of nutrient uptake, I will simulate the plant C economy under optimality constraints – a powerful approach, supported by observations but not exploited for DGVMs. The project is conceived to combine the relevant expertise and exploit the pioneering science of leading European researchers with my integrating role and demonstrated model development skills. Collaboration with two secondment hosts will facilitate the mining of their large data resources and fusing data into model predictions using Bayesian statistical tools. This project will integrate new model components developed at my current host institute and will be a crucial step on the way to building the next generation of vegetation models.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences computer and information sciences data science
- natural sciences earth and related environmental sciences atmospheric sciences meteorology solar radiation
- natural sciences biological sciences ecology ecosystems
- natural sciences earth and related environmental sciences atmospheric sciences climatology climatic changes
- natural sciences biological sciences botany
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF-EF-ST - Standard EF
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2015
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
08193 Bellaterra
Spain
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.