Objective
This is a project in commutative algebra of positive characteristic, which has also many connections with algebraic geometry.The main goal of this project is to study the relations between some classes of rings that arise in prime characteristic, F-singularities, and three specific notions. These are the symmetric signature, a new invariant defined by the Experienced Researcher in his Ph.D. thesis; the generalized Hilbert-Kunz function, a recent generalization of the classical Hilbert-Kunz function studied intensively in prime characteristic algebra; and the FFRT property, a positive characteristic version of the notion of finite representation type, important in representation theory. As a guideline for the future research, eight concrete problems are stated and will be investigated by the Experienced Researcher with the help of the Supervisor. The strategy to complete this task include the acquisition of new knowledge, which will be obtained, among other things, also through the organization of weekly seminars with the collaboration of the host institution. The arguments of this project, F-singularities in particular, are important topics in commutative algebra and algebraic geometry which are developing and growing fast in these years, especially in the USA and in Japan. As a further way to promote the development of these topics also in Europe, the Experienced Researcher and the Supervisor plan to organize a small workshop which will take place in the host institution at the end of the fellowship.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences mathematics pure mathematics algebra commutative algebra
- natural sciences mathematics pure mathematics geometry
- natural sciences mathematics pure mathematics algebra algebraic geometry
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2015
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
08007 BARCELONA
Spain
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.