Objective
Protocells are micro-compartments able to perform or mimic primitive biological functions of real cells. Because of this, they are proposed as stepping-stones towards the understanding of the origin of life on Earth. These “smart” microcapsules find potential applications in a variety of fields including medicine, pharmacology, energy conversion, and bioengineering. Progress in these fields will be considerably enhanced by gaining control over communication between protocells, as well as engineering collective functions of protocells.
An important step towards the achievement of these goals can be made by employing bioorthogonal reactions. Bioorthogonal chemistry is a subclass of click chemistry that includes chemical reactions designed to occur in very complex media like the cell's cytosol. Bioorthogonal reactions are based on exogenous and atoxic reagents that react together quickly, chemoselectively and in quantitative yields. The introduction of bioorthogonal functionalities onto a protocell surface will open new possibilities in protocell engineering. In particular, the creation of bioorthogonally reactive protocells will represent the first step towards the creation of an unprecedented method for artificially controlling protocell communication and the assembly of prototissues with very high spatial and temporal control.
The previous expertise of the applicant in the field of bioorthogonal chemistry and chemistry at the interface of materials will be applied to the multidisciplinary and emerging field of protocells in which the hosting group of Professor Stephen Mann FRS at the University of Bristol has been pioneering over the last few years. The key outcome of the combined research efforts of the applicant and the Mann group will lead to the synthesis of bioorthogonally reactive protocells and the investigation of their reactivity for the controlled exchange of biomaterials and the assembly of prototissues.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology industrial biotechnology biomaterials
- medical and health sciences basic medicine pharmacology and pharmacy
- natural sciences chemical sciences
- engineering and technology environmental engineering energy and fuels energy conversion
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2015
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
BS8 1QU BRISTOL
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.