Objective
Cochlear implants (CIs) are proven effective in restoring hearing to the severe-to-profoundly deaf. Up to 2012, there were more than 100,000 CI users in Europe, which only accounts for 7% of all adult CI candidates. The most severe limitation of current CI technology is caused by the wide spread of electric current in the cochlea, which results in a poor spectral resolution of electrical stimulation of the nerve and limits the number of effective electrodes. Computational models of the cochlea have been used to facilitate the development of CIs. These models depend on the geometry of the reconstructed cochlea and the exact knowledge of the electrical impedances of different tissues. However, only crude estimation of the impedances of all media is available, and most computational models of the cochlea only adopted an ideal representation of the geometry. Therefore, CIModelPLUS aims to provide engineers an advanced computational model of the cochlea with incorporated CI, which will show improved accuracy of the electric current distribution in the tissues, in order to facilitate the development of next-generation CIs. To fulfil this aim, computational models of cochleae will be reconstructed from the µ-CT scans of temporal bone specimens, and the electric current distribution inside the cochlea will also be measured experimentally. The simulation and experimental results will later be combined to develop the advanced computational model of the cochlea. CIModelPLUS involves interdisciplinary research between engineering, physics, neuroscience and medicine, and intersectoral collaboration between academia and CI industry. It will lead to the future development of CIs due to the accurate and validated computational approach adopted, and the advancement of CI technology will improve the quality of life of over 100,000 current CI users and other CI candidates in Europe, as well as that of their families and the communities that they reside in.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences biological sciences neurobiology
- natural sciences physical sciences electromagnetism and electronics
- engineering and technology medical engineering diagnostic imaging computed tomography
- natural sciences mathematics pure mathematics geometry
- medical and health sciences medical biotechnology implants
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF-EF-ST - Standard EF
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2015
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
80333 Muenchen
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.