Objective Reliable and robust methods for determining iron, zinc and copper status in the general population are needed. High precision natural intrinsic isotopic techniques originating in Earth Sciences can be used to reveal elusive metal pathways. The tight energy controls in biological systems mean that the isotope effect is seen in different metal-protein environments, depending on the ligand coordination and, if relevant, the oxidation state of the metal. When metal pathways adjust, due to increased or decreased uptake, excretion or another metabolic change, the isotope composition of a metal reservoir reflects this. Recent studies have indicated that these high precision isotopic analyses of blood may provide a new reliable method to determine metal status and disease.However, the interpretation of high precision isotopic data currently relies on computational models and plant-based laboratory experiments, and these assumptions are not sufficient to constrain isotopic signatures in human biological systems. Accurate interpretation of the isotopic signature is key to understanding the metabolic pathway that lead to a change in metal status. This study will investigate the isotopic fractionation of iron, copper and zinc on binding with proteins in simple to complex biological systems, and how this relates to metal cell metabolism, with the key aim of establishing a robust reference frame for future investigations of isotope biochemistry. Fields of science natural scienceschemical scienceselectrochemistryelectrolysisnatural scienceschemical sciencesinorganic chemistrytransition metalsnatural sciencesbiological sciencesbiochemistrybiomoleculesproteinsnatural sciencesbiological sciencescell biologycell metabolismnatural sciencesearth and related environmental sciences Keywords Isotope geochemistry Programme(s) H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions Main Programme H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility Topic(s) MSCA-IF-2015-EF - Marie Skłodowska-Curie Individual Fellowships (IF-EF) Call for proposal H2020-MSCA-IF-2015 See other projects for this call Funding Scheme MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF) Coordinator UNIVERSITEIT GENT Net EU contribution € 160 800,00 Address Sint pietersnieuwstraat 25 9000 Gent Belgium See on map Region Vlaams Gewest Prov. Oost-Vlaanderen Arr. Gent Activity type Higher or Secondary Education Establishments Links Contact the organisation Opens in new window Website Opens in new window Participation in EU R&I programmes Opens in new window HORIZON collaboration network Opens in new window Other funding € 0,00