Periodic Reporting for period 1 - LDC4PCaTher (BMX-targeted ligand-drug conjugates for prostate cancer therapy)
Reporting period: 2016-11-01 to 2018-10-31
During this project, we aim to develop new ligand–drug conjugates (LDCs) that can efficiently target prostate cancer cells and delivered the cytotoxic payload in the tumour, killing the cancer cells and sparing the healthy ones.
All the molecules were evaluated for affinity against the target protein BMX and an X-ray crystal structure of the protein covalently linked to an inhibitor was obtained. The most potent compound of the series was further tested against a set of 36 BMX-related kinases for selectivity. The lead molecules identified in the first stage of the project were then tested in their capacity to inhibit proliferation of prostate cancer cell lines LNCaP and PC-3. The ligand-drug conjugate is currently being synthesised and will be evaluated in vivo after the period covered by the Fellowship.
During this project, we were able to identify a family of potent compounds with optimized physicochemical properties, selective for the TEC family of kinases. This work is currently in the process of being patented to allow further commercial exploitation. Once the IP is secured, it will be published in high ranking peer reviewed journals and presented at international conferences.
At the onset of this project, ligand-drug conjugates (LDCs) were emerging as a promising alternative to overcome these limitations and their versatility also allowed the development of conjugates targeting a myriad of different targets. With this project, we aimed to develop the first intracellular targeted LDC, adding another layer of selectivity to the first generation LDCs. We expect, upon the completion of the project, to have developed a conjugated displaying superior performance in comparison to small molecules currently used in chemotherapy and existing LDCs. Furthermore, we found strong evidence of the beneficial effects of using combination therapy approaches and therefore, once completed, our studies will also open new avenues for the use of LDCs and BMX inhibitors as novel therapeutic options for the treatment of prostate cancer.