Objective
Understanding how form emerges in living organisms is a fundamental challenge for biology. Progress, however, has been confounded by the complex chain of interactions underlying the organization of macroscopic forms from molecular processes. Consequently, insights into the manner in which individual genes contribute to the development of form have been elusive; even in well-studied model organisms. In this context, leaves provide a striking example of the self-organization of form – displaying remarkable diversity within and between species. Now, exploiting the close relation between simple leafed A. thaliana and compound leafed C. hirsuta, the Tsiantis lab has identified the key genetic factors underlying their distinct leaf shapes. This opens the door to a detailed understanding of the developmental factors sculpting leaf form.
Due to the complexity of leaf development, however, a mechanistic understanding of these factors requires computational models, informed by detailed quantitative measurements of growth and gene expression. Such models permit the systematic interrogation of the interactions linking genetic regulation, cell division and tissue growth to final form. This action proposes to develop such a computational framework. When combined with experimental efforts, these models promise to help elucidate the regulation of leaf form and provide essential insights into shape regulation in eukaryotic systems. The proposed research is deeply interdisciplinary, working at the interface of computer science and developmental
biology. Falling directly at the intersection of the Tsiantis lab's expertise in studying the molecular determinants of
leaf form and my expertise in computational modeling of plant development, it fully exploits our relative strengths. Thus providing an ideal vehicle to facilitate essential training while addressing a fundamental research problem.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences computer and information sciences software
- natural sciences biological sciences developmental biology
- natural sciences mathematics pure mathematics geometry
- agricultural sciences agriculture, forestry, and fisheries agriculture agronomy plant breeding
- natural sciences physical sciences optics microscopy confocal microscopy
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF-EF-ST - Standard EF
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2015
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
80539 MUNCHEN
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.