Skip to main content

Optical lattices around a nanofiber waveguide


Recently developed experimental techniques for cooling, trapping and localizing atoms near nanostructures, such as one-dimensional nanoscopic waveguides, offer a new paradigm to investigate quantum light-matter interactions. Collective coherent effects in such engineered interfaces pave the way to integrated quantum technology applications, including single-photon sources and efficient quantum memory for light. The present project investigates this approach based on arrays of cold atoms trapped in the vicinity of a nanofiber. In parallel to experimental developments at the host, this project will develop the theoretical framework of photon scattering in commensurate and non-commensurate arrays and will include ab-initio microscopic description of the interaction. Bragg scattering and superradiance effect will be studied to obtain larger efficiency than previous ensemble-based implementations. Waveguide-mediated long-range organization of the array will also be investigated.

Call for proposal

See other projects for this call


21 Rue De L'ecole De Medecine
75006 Paris
Activity type
Higher or Secondary Education Establishments
EU contribution
€ 173 076