Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Modelling of Generic Extreme mass-ratio inspirals

Objective

Inspiralling binaries of compact objects are a promising source of gravitational waves (GWs) in the upcoming era of GW astronomy. The MoGEs project proposes to take the next step in modelling the evolution of compact binaries using the gravitational self-force (GSF) formalism. Until now, the linear-in-mass-ratio GSF has only been calculated under the simplifying assumptions of non-spinning, circular, and/or equatorial binaries. MoGEs will, for the first time, calculate linear-in-mass-ratio GSF including all effects of spin, eccentricity and inclination.

This is achieved by reconstructing the local metric perturbation produced by a particle from solutions of the Teukolsky equation, which in turn are obtained using the semi-analytical MST formalism. The regular correction to the motion of the particle is then extracted using a mode-sum regularization scheme. The applicant has previously proven this combination of methods effective in the simpler case of equatorial orbits.

Knowledge of the GSF will allow the modelling of the evolution of extreme mass-ratio inspirals (EMRIs) and the GWs that they generate. Accurate modelling of the latter is essential if they are to be observed by future GW observatories such as eLISA. Observation of GWs from an EMRI would yield a wealth of physical information, from precise measurements of physical characteristics of the observed system (including mass, angular momentum, and redshift) to fundamental tests of general relativity by providing an accurate map of the spacetime geometry generated by the system.

More immediately, MoGEs will capitalize on the new GSF data by combining the expertise of the applicant and the hosts at the Albert Einstein Institute (AEI) to improve the effectiveness of effective-one-body (EOB) models for eccentric spinning binaries. Any such improvements can directly be deployed in the ongoing GW searches at LIGO and Virgo, that already use EOB models in their detection pipelines.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-IF-EF-ST - Standard EF

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-IF-2015

See all projects funded under this call

Coordinator

MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 171 460,80
Address
HOFGARTENSTRASSE 8
80539 MUNCHEN
Germany

See on map

Region
Bayern Oberbayern München, Kreisfreie Stadt
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 171 460,80
My booklet 0 0