Objective
Developmental progression is linked to accumulation of epigenetic memory mainly in the form of chemical modifications of the chromatin. However, the dynamics of this process as well as its functional relevance remains unclear. One of the most striking examples of transcriptional regulation by epigenetic processes is random X chromosome inactivation (XCI) in female mammalian embryos, which evolved to compensate between XX and XY individuals. This process is strictly dependent on coating of one X chromosome by a long non-coding RNA, Xist. This process is also associated with rapid and dramatic remodelling of the chromatin resulting in the loss of active epigenetic marks and reciprocal accumulation of repressive ones. The functional relevance and exact specio-temporal dynamics of this process remains elusive. Here I propose to address these questions by using an integrated approach linking in vivo with in vitro experiments as well as population-based and single-cell studies. I will use a proprietary single-cell ChIPseq method and standard ChIPseq assay to assess the dynamics of X chromosome epigenetic inactivation. Further transcriptomic experiments and chromatin accessibility profiling will add additional depth to a dataset accounting to a roadmap for XCI. I aim at identifying the initial stages of epigenetic programming leading to transcriptional repression as well as genomic loci involved in nucleating these changes. I will finally address the functional relevance of X chromosome epigenetic programming by using gene knockout models and genome-wide single cell transcriptomics approach. Such work will have wide-raging implications beyond the field of XCI. By achieving unprecedented level of information on the heterogeneity and dynamics of epigenetic processes this project will allow further studies of similar processes occurring in development, aging or carcinogenesis.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology materials engineering coating and films
- natural sciences biological sciences genetics RNA
- natural sciences biological sciences genetics chromosomes
- medical and health sciences clinical medicine embryology
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2015
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
75231 Paris
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.