Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Insulin resistance and Tauopathy : Insights from Drosophila models and human brain samples

Objective

Alzheimer's disease (AD) is the most common neurodegenerative disorder affecting about 20 million people worldwide. Although aging is considered to be the most important risk factor for Alzheimer's disease, growing evidence from epidemiological studies suggest that type-2 diabetes (T2DM) increases the risk factor of AD.
While compelling evidence establishes a link between insulin resistance and amyloid burden, relationships to tau are far from clear. In a recent study, it was shown that dysregulation of brain insulin signaling in both AD and T2DM, correlates to hyperphosphorylation of tau, a key abnormal tau modification leading to neurofibrillary tangles. Recent reports indicated that AD was associated with brain insulin resistance with significant abnormalities in the expression of genes and activation of kinases that are regulated by insulin and insulin-like growth factor signaling. Although a connection has been suggested between AD and diabetes, the mechanisms that link insulin resistance to AD are still unknown.
Insulin resistance also leads to the impairment of autophagic pathway needed for clearance of misfolded proteins in neurodegenerative disorders.
The objective of this study is to utilize robust Drosophila models of tauopathy and diabetes to decipher the underlying mechanistic pathways connecting these two devastating diseases. Furthermore, this proposal aims to study the effect of autophagy towards clearance of misfolded proteins in the background of insulin resistance and subsequent treatment of disease models with insulin sensitizing/autophagy activating drugs to ameliorate disease phenotypes.
The results from this study will be further validated in post mortem brain samples from healthy and diseased patients for future therapeutic studies.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-IF-EF-CAR - CAR – Career Restart panel

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-IF-2015

See all projects funded under this call

Coordinator

UNIVERSITY OF SOUTHAMPTON
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 183 454,80
Address
Highfield
SO17 1BJ SOUTHAMPTON
United Kingdom

See on map

Region
South East (England) Hampshire and Isle of Wight Southampton
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 183 454,80
My booklet 0 0