Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Advanced studies of trapping and rotation of nanoparticles in vacuum

Objective

The aim of this proposal is to explore new and innovative routes to confine and cool trapped microparticles in vacuum. The elegance of trapping such microparticles in vacuum arises from the absence of any physical contact with the environment leading to any routes of dissipation. The challenge is to hold such particles in strong, highly localised traps, cool them and explore physics at the classical-quantum boundary.
The present proposal aims to address these issues with a number of clear routes to address acknowledged bottlenecks in the field. (i) Firstly the use of light propagation in complex media (such as a multimode fibre) combined with vacuum studies leads to an innovative route for trapping, confining and addressing microparticles in complex vacuum systems without the need for ‘bulk’ microscope objectives or conventional optics. This also facilitates trapping in such geometries and creating with ease loading and 'science' chambers for the proposed research. (ii) A further advance will be the use of nanostructures such as double nanohole arrays for trapping that, due to their strong light confinement lead to ultra-high trap stiffnesses. In turn this means the very high resultant oscillator frequency reduces the cooling needed to achieve the quantum ground state. (iii) Finally a third strand will look at loading antireflection coated particles into such traps. This can result in trap stiffnesses up to one to two orders of magnitude higher than currently seen, again allowing cooling to the ground state.
These ideas are disruptive and unconventional and unique to the applicant and host institute to the best of our knowledge. They will result in a step change in the field and internationally leading results. In addition the programme will allow a comprehensive and positive training package for the applicant as a basis for his future career in academia.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-IF-EF-ST - Standard EF

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-IF-2015

See all projects funded under this call

Coordinator

THE UNIVERSITY COURT OF THE UNIVERSITY OF ST ANDREWS
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 195 454,80
Address
NORTH STREET 66 COLLEGE GATE
KY16 9AJ ST ANDREWS
United Kingdom

See on map

Region
Scotland Eastern Scotland Clackmannanshire and Fife
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 195 454,80
My booklet 0 0