Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Probing principles of neural coding with all-optical interrogation in behaving mice

Objective

How is information encoded in the brain? Sensory neurons transform information from the outside world into electrical signals which are transmitted via the sensory pathway into the neocortex. In the neocortex, the area crucially involved in higher cognitive functions, neurons form networks that exhibit complex time-varying patterns of activity. The nature of the neural code that is used by these neuronal networks to encode and pass on information by means of spatiotemporal activity patterns is largely unknown.
I will combine large-scale neuronal recordings, advanced analysis tools and targeted manipulation of neuronal activity in the context of behaviour to extract population activity patterns that encode stimulus information and most crucially identify their functional relevance in the behaving animal.
Specifically, I will establish a fine-tuned texture discrimination task in head-fixed mice that depends on information processing in layer 2/3 of barrel cortex. I will use two-photon calcium imaging to detect activity in large populations of neurons during task performance. I will apply advanced analysis tools including dimensionality reduction methods, dynamical systems approaches, and network simulations to extract and characterise stimulus and task-specific population activity patterns. In order to establish behavioural relevance I will perturb neural activity during two-photon imaging in the behaving mouse by using time-varying patterned optogenetic manipulation. This will allow me to directly probe the functional relevance of neural activity patterns and establish a causal link between identified population activity patterns and behaviour.
This project will provide unprecedented insights into the nature of neural dynamics in neocortex as well as constraints for computational models of neocortical function that will be used to provide a mechanistic understanding of the neural code.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-IF-EF-ST - Standard EF

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-IF-2015

See all projects funded under this call

Coordinator

UNIVERSITY COLLEGE LONDON
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 183 454,80
Address
GOWER STREET
WC1E 6BT LONDON
United Kingdom

See on map

Region
London Inner London — West Camden and City of London
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 183 454,80
My booklet 0 0