Objective The replication of DNA and therefore of the genetic information is realized at the molecular level in three steps: helicases open the DNA, primases initiate the replication and polymerases use this primer to duplicate the DNA strand. The precise mechanism of action of primases has up to now remain quite elusive and thus a better understanding of how primase works would be of great interest to fully understand the process of DNA replication. Primases are classed into two groups, bacterial and archeal/eukaryal, and some archeal primase have the particularity to carry their biological function without requiring the association in a larger molecular complex, making them an accessible target to Nuclear Magnetic Resonance (NMR) spectroscopy.In this project we propose to exploit the unique capacity of NMR spectroscopy for determining structure and dynamics of biomolecules in solution to investigate the ORF904 primase, free and in complex with its DNA template and the cofactors necessary for primer synthesis. We aim to characterize how this system assembles and to provide an atomic resolution picture of its mechanism of action, just before the creation of the first phosphodiester bound that initiate primer formation. We will also investigate the conformational changes occurring during the primer synthesis using Electron Paramagnetic Resonance (EPR) spectroscopy. Spectroscopic and computational innovative approaches will be developed to describe this complex dynamic system and complementary integrative structural biology will be used to support our findings.By this study we aim to provide an accurate description of a primase accomplishing its biological function and therefore significantly deepen our knowledge of DNA replication. This in turn could be used in cancer biology to develop new therapeutic approaches. Fields of science natural sciencesbiological sciencesgeneticsDNAnatural sciencesbiological sciencesbiochemistrybiomoleculesproteinsnatural sciencesphysical sciencesopticsspectroscopyabsorption spectroscopynatural sciencesbiological sciencesgeneticsnucleotidesnatural sciencesbiological sciencesmolecular biologystructural biology Keywords Primase DNA replication protein-DNA complex primer NTP NMR EPR molecular dynamics molecular biology conformation dynamics structure Programme(s) H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions Main Programme H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility Topic(s) MSCA-IF-2015-EF - Marie Skłodowska-Curie Individual Fellowships (IF-EF) Call for proposal H2020-MSCA-IF-2015 See other projects for this call Funding Scheme MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF) Coordinator EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH Net EU contribution € 175 419,60 Address Raemistrasse 101 8092 Zuerich Switzerland See on map Region Schweiz/Suisse/Svizzera Zürich Zürich Activity type Higher or Secondary Education Establishments Links Contact the organisation Opens in new window Website Opens in new window Participation in EU R&I programmes Opens in new window HORIZON collaboration network Opens in new window Other funding € 0,00