Objective
CAPABLE’s long term objective is to develop a complex lidar spectrometer that allows us to measure vertically resolved
profiles of trace gases, chemical components in particles, and bio-aerosols in atmospheric aerosol pollution. This information
can be used for studies of the effect of the vertical distribution of aerosol and gas pollution on climate forcing, air quality, and
human health. Impact on economically sensitive areas like air traffic safety caused by, e.g. volcanic plumes and desert dust,
will be a spin-out product of our work. This lidar spectrometer will be based on simultaneous, vertically and spectrally
resolved measurements of Raman and photoluminescence (PL)/fluorescence spectrums. In the first stage we develop the
technique to the point that we can identify some of the most important climate-relevant aerosol components in a qualitative
manner and we will develop computer models that will allow us to verify our measurement results on the basis of theoretical
simulations. The models will form an end-to-end simulator that will allow us to develop and design the basic concepts of a
Raman and PL spectroscopy lidar and necessary hardware specifications and explore the detection limits for the mobile
measurement channel that can be installed in existing lidars. In the second stage, which can in part be achieved in this twoyear
funding period we want to improve the methodology so that we can quantify at least some of the components,
preferably to the level of profiles of mass concentrations measured under ambient atmospheric conditions. The third stage,
which goes beyond the main purpose of our project, will explore the concept of Coherent anti-Stokes Raman spectroscopy
(CARS) for chemical aerosol characterization. CARS could allow for detection of atmospheric pollutants with significantly
higher sensitivity, and thus result in much shorter data integration times.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences physical sciences optics microscopy
- natural sciences earth and related environmental sciences environmental sciences pollution
- natural sciences earth and related environmental sciences atmospheric sciences meteorology troposphere
- natural sciences physical sciences optics spectroscopy
- natural sciences mathematics applied mathematics mathematical model
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF-EF-ST - Standard EF
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2015
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
AL10 9AB Hatfield
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.