Objective
Solar light promoted CO2 reduction could be the “greenest” alternative to fossil fuels as it would also decrease the atmospheric CO2 emissions. ZESMO comes from the idea of developing an efficient, robust and low-cost photocatalytic system to improve reported conversion rates for CO2 reduction by H2O. Some of the problems to overcome are the limited wavelength response (frequently limited to only 4% of the total solar light energy), photo-corrosion and low quantum efficiencies. The photocatalyst presented in this proposal is designed to tackle these issues and achieve a better performance by incorporating Suphthalocyanine (SubPc) (light harvester) and metal clusters (semiconductor) into zeolites. Zeolite’s pores act as “nano-reactors” entrapping both species and enhancing chemical stability and catalytic activity. The second part of the project deals with the evaluation of the photocatalytic activity of a series of synthesised hybrids. The system will be subjected to operation lifetime studies for its possible future commercialisation.
The development and management of ZESMO would introduce me to important fields such as inorganic chemistry, photochemistry and material science. It would provide the best opportunity for me to grow as an independent researcher. I would contribute with my expertise in organic and supramolecular chemistry, especially in synthesis and characterisation of SubPc and nanoparticles.
SubPc-zeolite hybrids are unknown, to date there are no examples of zeolites entrapping two different systems in the same pore. Therefore the expected scientific impact is very high. The overall purpose of the proposal is to find an efficient photocatalyst which will be tested for the implementation and real use for society. Since this achievement would give access to solar fuels, it would impact not only EU but worldwide economy. ZESMO would also be an environmental breakthrough towards mitigation of the greenhouse effect problem.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences chemical sciences catalysis photocatalysis
- engineering and technology environmental engineering energy and fuels renewable energy
- natural sciences chemical sciences inorganic chemistry inorganic compounds
- natural sciences physical sciences optics spectroscopy absorption spectroscopy
- engineering and technology nanotechnology nano-materials
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF-EF-ST - Standard EF
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2015
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
46022 VALENCIA
Spain
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.