European Commission logo
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Chemical Engineering of Functional Stable Metal-Organic Frameworks: Porous Crystals and Thin Film Devices

Objectif

Metal-Organic-Frameworks (MOFs) offer appealing advantages over classical solids from combination of high surface areas with the crystallinity of inorganic materials and the synthetic versatility (unlimited combination of metals and linkers for fine tuning of properties) and processability of organic materials. Provided chemical stability, I expect combination of porosity with manipulable electrical and optical properties to open a new world of possibilities, with MOFs playing an emerging role in fields of key environmental value like photovoltaics, photocatalysis or electrocatalysis. The conventional insulating character of MOFs and their poor chemical stability (only a minimum fraction are hydrolytically stable) are arguably the two key limitations hindering further development in this context.
With chem-fs-MOF I expect to deliver:
1. New synthetic routes specifically designed for producing new, hydrolytically stable Fe(III) and Ti(IV)-MOFs (new synthetic platforms for new materials).
2. More advanced crystalline materials to feature tunable function by chemical manipulation of MOF’s optical/electrical properties and pore activity (function-led chemical engineering).
3. High-quality ultrathin films, reliant on the transfer of single-layers, alongside establishing the techniques required for evaluating their electric properties (key to device integration). Recent works on graphene and layered dichalcogenides anticipate the benefits of nanostructuration for more efficient optoelectronic devices. Notwithstanding great potential, this possibility remains still unexplored for MOFs.
Overall, I seek to exploit MOFs’ unparalleled chemical/structural flexibility to produce advanced crystalline materials that combine hydrolytical stability and tunable performance to be used in environmentally relevant applications like visible light photocatalysis. This is an emerging research front that holds great potential for influencing future R&D in Chemistry and Materials Science.

Régime de financement

ERC-STG - Starting Grant

Institution d’accueil

UNIVERSITAT DE VALENCIA
Contribution nette de l'UE
€ 1 527 351,26
Adresse
AVENIDA BLASCO IBANEZ 13
46010 Valencia
Espagne

Voir sur la carte

Région
Este Comunitat Valenciana Valencia/València
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total
€ 1 527 351,26

Bénéficiaires (1)