Objective
Homogeneous catalysis is of prime importance for the selective synthesis of high added value chemicals. Many of the currently available catalysts rely on noble metals (Ru, Os, Rh, Ir, Pd, Pt), which suffer from a high toxicity and environmental impact in addition to their high cost, calling for the development of new systems based on first-row transition metals (Mn, Fe, Co, Ni, Cu). The historical paradigm for catalyst design, i.e. one or more donor ligands giving electron density to stabilize a metal center and tune its reactivity, is currently being challenged by the development of acceptor ligands that mostly withdraw electron density from the metal center upon binding. In the last decade, such ligands – mostly based on boron and heavier main-group elements – have evolved from a structural curiosity to a powerful tool in designing new reactive units for homogeneous catalysis.
I will develop a novel class of ligands that use C=E (E=O, S, NR) multiple bonds anchored in close proximity to the metal by phosphine tethers. The electrophilic C=E multiple bond is designed to act as an acceptor moiety that adapts its binding mode to the electronic structure of reactive intermediates with the unique additional possibility of involving the lone pairs on heteroelement E in cooperative reactivity. Building on preliminary results showing that a C=O bond can function as a hemilabile ligand in a catalytic cycle, I will undertake a systematic, experimental and theoretical investigation of the structure and reactivity of M–C–E three membered rings formed by side-on coordination of C=E bonds to a first-row metal. Their ability to facilitate multi-electron transformations (oxidative addition, atom/group transfer reactions) will be investigated. In particular, hemilability of the C=E bond is expected to facilitate challenging C–C bond forming reactions mediated by Fe and Ni. This approach will demonstrate a new conceptual tool for the design of efficient base-metal catalysts.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences chemical sciences catalysis
- natural sciences chemical sciences inorganic chemistry metalloids
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-STG - Starting Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2016-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
3584 CS Utrecht
Netherlands
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.