Objective
Prediction of Open Rotor broadband noise requires boundary layer statistics that, for the high subsonic relative Mach number encountered by the blades, are not available today in literature. The CRORTET project, fills this lack by preparing and executing a high fidelity wind tunnel test, analyse the results and deliver a well documented data base with test data.
One of the major sources of broadband noise is due to the deformation and interaction of the turbulent vortices in the rotor blade boundary layer when they pass over the blade trailing edge. Existing semi-analytical models for the prediction of broadband traling edge noise emission require turbulence statistics of the surface pressures close to the trailing edge, namely: the fluctuation spectrum, convection velocity and spanwise correlation length of the surface pressures. Existing experimental data were made on flat plates, NACA0012 or similar airfoils at low Mach number, No experimental data nor high fidelity simulations are available for the high subsonic Mach conditions encountered by the rotor blades operating in approach (0.5) take-off (0.7) and cruise (0.9) conditions. Applying semi-analytical methods to these conditions, using inappropriate surface pressure statistics shows a shortfall in comparison to open rotor experimental data. It is thought that this is mainly due to the use of low Mach number data on profiles too much different from CROR blade profiles.
Therefore, in the CRORTET project two airfoils will be specifically designed, manufactured and tested in the DNW-TWG wind tunnel at full scale Reynolds number (representative for a front row CROR blade at 75% blade span) and in the appropriate Ma range. One of those airfoils is a reference airfoil (e.g. a NACA0012 or similar), the other airfoil will be specifically designed to represent a CROR blade. The main goal of the project is to create a high quality data base for future high fidelity numerical computation of broadband noise emission.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences computer and information sciences databases
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors optical sensors
- engineering and technology mechanical engineering vehicle engineering aerospace engineering aircraft
- engineering and technology environmental engineering energy and fuels
- natural sciences physical sciences optics laser physics
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.3.4. - SOCIETAL CHALLENGES - Smart, Green And Integrated Transport
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.3.4.5.4. - ITD Airframe
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
CS2-IA - Innovation action
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-CS2-CFP02-2015-01
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
1059CM Amsterdam
Netherlands
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.