Objective While the origin of magnetic order in condensed matter is in the exchange and spin-orbit interactions, with time scales in the subpicosecond ranges, it has been long believed that magnetism could only be manipulated at nanosecond rates, exploiting dipolar interactions with external magnetic fields. However, in the past decade researchers have been able to observe ultrafast magnetic dynamics at its intrinsic time scales without the need for magnetic fields, thus revolutionising the view on the speed limits of magnetism. Despite many achievements in ultrafast magnetism, the understanding of the fundamental physics that allows for the ultrafast dissipation of angular momentum is still only partial, hampered by the lack of experimental techniques suited to fully explore these phenomena. However, the recent appearance of two new types of coherent radiation, single-cycle THz pulses and x-rays generated at free electron lasers (FELs), has provided researchers access to a whole new set of capabilities to tackle this challenge. This proposal suggests using these techniques to achieve an encompassing view of ultrafast magnetic dynamics in metallic ferromagnets, via the following three research objectives: (a) to reveal ultrafast dynamics driven by strong THz radiation in several magnetic systems using table-top femtosecond lasers; (b) to unravel the contribution of lattice dynamics to ultrafast demagnetization in different magnetic materials using the x-rays produced at FELs and (c) to directly image ultrafast spin currents by creating femtosecond movies with nanometre resolution. The proposed experiments are challenging and explore unchartered territories, but if successful, they will advance the understanding of the speed limits of magnetism, at the time scales of the exchange and spin-orbit interactions. They will also open up for future investigations of ultrafast magnetic phenomena in materials with large electronic correlations or spin-orbit coupling. Fields of science humanitiesartsmodern and contemporary artcinematographynatural sciencesphysical scienceselectromagnetism and electronicsspintronicsnatural sciencesphysical sciencesopticslaser physics Keywords Ultrafast magnetism spin currents lattice dynamics THz radiation x-ray free electron lasers Programme(s) H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC) Main Programme Topic(s) ERC-2016-STG - ERC Starting Grant Call for proposal ERC-2016-STG See other projects for this call Funding Scheme ERC-STG - Starting Grant Coordinator STOCKHOLMS UNIVERSITET Net EU contribution € 1 749 005,00 Address Universitetsvagen 10 10691 Stockholm Sweden See on map Region Östra Sverige Stockholm Stockholms län Activity type Higher or Secondary Education Establishments Links Contact the organisation Opens in new window Website Opens in new window Participation in EU R&I programmes Opens in new window HORIZON collaboration network Opens in new window Other funding € 0,00 Beneficiaries (2) Sort alphabetically Sort by Net EU contribution Expand all Collapse all STOCKHOLMS UNIVERSITET Sweden Net EU contribution € 1 749 005,00 Address Universitetsvagen 10 10691 Stockholm See on map Region Östra Sverige Stockholm Stockholms län Activity type Higher or Secondary Education Establishments Links Contact the organisation Opens in new window Website Opens in new window Participation in EU R&I programmes Opens in new window HORIZON collaboration network Opens in new window Other funding € 0,00 UNIVERSITA CA' FOSCARI VENEZIA Italy Net EU contribution € 218 750,00 Address Dorsoduro 3246 30123 Venezia See on map Region Nord-Est Veneto Venezia Activity type Higher or Secondary Education Establishments Links Contact the organisation Opens in new window Website Opens in new window Participation in EU R&I programmes Opens in new window HORIZON collaboration network Opens in new window Other funding € 0,00