Objective
While access to 3D-printing technology becomes ubiquitous and provides revolutionary possibilities for fabricating complex, functional, multi-material objects with stunning properties, its potential impact is currently significantly limited due to the lack of efficient and intuitive methods for content creation. Existing tools are usually restricted to expert users, have been developed based on the capabilities of traditional manufacturing processes, and do not sufficiently take fabrication constraints into account. Scientifically, we are facing the fundamental challenge that existing simulation techniques and design approaches for predicting the physical properties of materials and objects at the resolution of modern 3D printers are too slow and do not scale with increasing object complexity. The problem is extremely challenging because real world-materials exhibit extraordinary variety and complexity.
To address these challenges, I suggest a novel computational approach that facilitates intuitive design, accurate and fast simulation techniques, and a functional representation of 3D content. I propose a multi-scale representation of functional goals and hybrid models that describes the physical behavior at a coarse scale and the relationship to the underlying material composition at the resolution of the 3D printer. My approach is to combine data-driven and physically-based modeling, providing both the required speed and accuracy through smart precomputations and tailored simulation techniques that operate on the data. A key aspect of this modeling and simulation approach is to identify domains that are sufficiently low-dimensional to be correctly sampled. Subsequently, I propose the fundamental re-thinking of the workflow, leading to solutions that allow synthesizing model instances optimized on-the-fly for a specific output device. The principal applicability will be evaluated for functional goals, such as appearance, deformation, and sensing capabilities.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- engineering and technology materials engineering colors
- natural sciences computer and information sciences computational science
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering robotics
- engineering and technology mechanical engineering manufacturing engineering additive manufacturing
- natural sciences computer and information sciences artificial intelligence heuristic programming
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-STG - Starting Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2016-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
3400 KLOSTERNEUBURG
Austria
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.