Project description
First demonstration of porous crystalline film growth from the vapour phase
Many innovative concepts and even physically realisable systems reach a barrier to commercialisation when they are not amenable to low-cost, high-scale manufacturing methods that support integration into other components. Metal-organic frameworks (MOFs), crystalline solids with highly regular pores in the nanometre range, are among these. The virtually limitless combination of organic and inorganic components in a porous structure promises success in highly sensitive and specific gas sensing, purification, separation, and catalysis applications. The ERC-funded VAPORE project will extend these applications to microelectronics by growing porous crystalline films from the vapour phase for the first time. Its solvent-free chemical vapor deposition route for MOF films will pave the way to MOFs integrated in microelectronics.
Objective
Metal-organic frameworks (MOFs) are crystalline solids with highly regular pores in the nanometer range. The possibility to create a tailored nano-environment inside the MOF pores makes these materials high-potential candidates for integration with microelectronics, e.g. as sensor coatings, solid electrolytes, etc. However, current solvent-based methods for MOF film deposition, a key enabling step in device integration, are incompatible with microelectronics fabrication because of contamination and corrosion issues.
VAPORE will open up the path to integrate MOFs in microelectronics by developing a solvent-free chemical vapor deposition (CVD) route for MOF films. MOF-CVD will be the first example of vapor-phase deposition of any type of microporous crystalline network solid and marks an important milestone in processing such materials. Development of the MOF-CVD technology platform will start from a proof-of-concept case and will be supported by the following pillars: (1) Insight in the process, (2) expansion of the materials scope and (3) fine-tuning process control. The potential of MOF-CVD coatings will be illustrated in proof-of-concept sensors.
In summary, by growing porous crystalline films from the vapor phase for the first time, VAPORE implements molecular self-assembly as a scalable tool to fabricate highly controlled nanopores. In doing so, the project will enable cross-fertilization between the worlds of nanoscale chemistry and microelectronics, two previously incompatible fields.
Fields of science
- engineering and technologynanotechnologynano-processes
- engineering and technologymaterials engineeringcoating and films
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectronic engineeringsensors
- natural sciencesphysical scienceselectromagnetism and electronicsmicroelectronics
- engineering and technologychemical engineeringchemical process engineering
Keywords
Programme(s)
Topic(s)
Funding Scheme
ERC-STG - Starting GrantHost institution
3000 Leuven
Belgium