Periodic Reporting for period 4 - PUNCA (Preparing for Unveiling the Nature of the Cosmic Acceleration)
Reporting period: 2021-09-01 to 2022-09-30
This is one of the most challenging open questions in modern cosmology, and the astronomical community have invested substantial effort in tackling it in the past two decades, including in particular the various expensive observational missions to collect data for testing theoretical models. The ongoing interest and effort from the community, however, are not the only reason why this is important: as the accelerated Hubble expansion does not seem to fit into the standard cosmological model which is based on our state-of-the-art knowledge in gravity and particle physics, it has been widely considered as an indication that this knowledge may be incomplete, and understanding it will hopefully shed light on new physics.
The overall objective of this project is to improve our understanding of the various theoretical models of gravitation which have been proposed to explain the accelerated Hubble expansion, to identify observational probes which are best suited to test these models, and thereby to prepare for maximally exploiting the next generation of cosmological observations to explore and clarify its the nature.
In WG1, one of the tasks is to run a large number of simulations of various models, to measure one of the main observables of weak lensing: the convergence power spectrum. The original plan was slightly changed as during the preparation we found some other interesting observables that can be extracted from lensing observations. A lot of effort was spent on the study of weak lensing by cosmic voids, and a novel probe developed in this process is cosmic voids detected from 2D weak lensing maps, which were found to have a greater potential for testing models using future lensing data. We also looked at the statistics of weak lensing peaks, which had not been studied in great details before, and discovered some surprisingly simple relations they follow. Consequently, the details of the planned simulations were modified from the original proposal so that they can be suitable for studying these new probes.
In WG2, our main goal is to use measurements of galaxy clustering to test models, an approach that relies on three building blocks: (1) accurately predicting the clustering of dark matter in real space, usually quantified by the matter power spectrum or correlation function, (2) understanding how the clustering of galaxies differs from that of dark matter, given that the former are biased tracers of the latter, and (3) understanding how best to model redshift space distortions (RSD), which can mislead people into obtaining wrong galaxy positions from observations. We have tackled (1) using three approaches: (1a) a halo model approach to predict the matter power spectrum, by improving our understanding of the different ingredients of the halo model, (1b) a reaction method to predict the matter power spectrum for dark energy and modified gravity models at precent accuracy, and (1c) an emulation approach by running simulations for a selection of models and doing interpolation to get the matter power spectra for models which are not simulated. We have tackled (3) using three approaches: (3a) ay measuring RSD from simulations of modified gravity models, (3b) an improvement of the traditional Gaussian streaming model for RSD based on a more accurate modelling of the probability distribution of galaxy pairwise velocities, and (3c) a novel backward modelling approach, with an iterative reconstruction method to remove the RSD effect from observed galaxy clustering for galaxy pairs separated by 20Mpc or more. The reconstruction approach has also been applied to study galaxies bias for building block (2). Along this process, we have developed the first self-consistent galaxy formation simulations in modified gravity theories. Furthermore, a few papers were published about the use of the so-called marked correlation function to test gravity.
In WG3, we have followed the work plan to develop a novel framework to test gravity using the abundance of galaxy clusters. We have analysed a large number of simulations for a popular modified gravity model (chameleon f(R) gravity), to study the most important properties of dark matter haloes, including their masses, density profiles and abundances. These analyses have led to some surprisingly simple and accurate fitting functions for these properties. We have worked on the first ever large realistic hydrodynamical cluster simulations: these not only helped to calibrate cluster scaling relations which are critical for measuring cluster abundances, but also showed interesting effect of modified gravity on the population and clustering of galaxies.
In WG1, we studied the uses of weak lensing by cosmic voids identified from lensing maps, and of the abundance and correlation function of weak lensing peaks, to constrain cosmological models, which were new ideas large unexplored previously. We completed the largest suite of cosmological simulations in two of the leading modified gravity models -- Hu-Sawicki f(R) gravity and the Dvali-Gabadadze-Poratti (DGP) braneworld model, consisting of a total of 400 simulations. These simulations were used to construct mock lensing maps matching the specifications of Euclid and LSST, from which we measured the various lensing observables mentioned above and trained emulators. The latter allowed us to make accurate predictions for constraint forecasts.
In WG2, there are a number of noteworthy highlights. The reaction approach has been found to be able to predict the matter power spectrum for a wide range of cosmological models at percent accuracy. The improved streaming model for RSD now gives us accurate predictions of the galaxy correlation function down to a galaxy separation of ~1Mpc (much smaller than the >20 Mpc scales used in usual cosmological analysis); in contrast, the standard Gaussian streaming model or perturbation methods usually fail at much larger scales. We have assembled these developments into a pipeline that allow us to make constraints using galaxy clustering data.
Some of the results by WG2 were published in two Nature Astronomy papers: in the first we used a set of high-resolution simulations to study galaxy clustering in f(R) gravity and placed a strong constraint on it; in the second we reported the first self-consistent galaxy formation simulations in f(R) gravity, and studied various galactic properties.
In WG3, we found simple fitting functions to some of the most important halo properties in f(R) gravity, and these greatly simplified our understanding of the nonlinear physical processes involved in halo formation in this popular gravity model. The recently-finished cluster simulations in modified gravity, and their analyses, are again the first of their kind. These simulations have been used to study the cluster scaling relations in modified gravity, which we have applied into our newly-developed framework and its associated numerical pipeline for testing gravity using cluster abundance.