Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Reconciling Scales in Global Seimology

Objective

For more than 30 years, seismologists have used seismic waves to produce 3D images of the structure of the Earth. Despite many successes, a number of key questions still remain, which are of the uttermost importance to understand plate tectonics. What is the nature of the Lithosphere-Asthenosphere Boundary? What is the structure and history of the continental lithosphere?

The problem is that different seismic observables sample the Earth at different scales; they have different sensitivity to structure, and are usually interpreted separately. Images obtained from short period converted and reflected body waves see sharp discontinuities, and are interpreted in terms of thermo-chemical stratification, whereas seismic models constructed from long period seismograms depict a smooth and anisotropic upper mantle, and are usually interpreted in terms of mantle flow. However, sharp discontinuities may also produce effective anisotropy at large scales, and only a joint interpretation of different frequency bands can allow to fully localizing the patterns of deformation in the mantle.

The proposed work consists in developing and applying an entirely new approach to geophysical data interpretation, where different data types sampling the Earth at different scales are jointly embraced into a single Bayesian procedure. This proposal focuses on theoretical, algorithmic and computational advances needed for a new generation of tomographic models. We will use the large amount of data available in North-America (surface wave measurements, scattered body waves, SKS splitting measurements) to produce a multiscale model under North-America, depicting both discontinuities and anisotropy. This will allow us to answer some crucial questions about the structure and evolution of Earth. We will also produce a first fully Bayesian global Earth model by jointly inverting normal modes, surface and body wave observations.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-STG - Starting Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2016-STG

See all projects funded under this call

Host institution

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 498 750,00
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 498 750,00

Beneficiaries (1)

My booklet 0 0